首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of bismuth(Bi) for both VO_2~+/VO2+ and V~(3+)/V~(2+) redox couples in vanadium flow batteries(VFBs) has been investigated by directly introducing Bi on the surface of carbon felt(CF).The results show that Bi has no catalytic effect for VO_2~+/VO2+ redox couple.During the first charge process,Bi is oxidized to Bi~(3+)(never return back to Bi metal in the subsequent cycles) due to the low standard redox potential of 0.308 V(vs.SHE) for Bi3+/Bi redox couple compared with VO_2+/VO2+ redox couple and Bi~(3+)exhibit no(or neglectable) electro-catalytic activity.Additionally,the relationship between Bi loading and electrochemical activity for V~(3+)/V~(2+) redox couple was studied in detail.2 wt%Bi-modified carbon felt(2%-BiCF) exhibits the highest electrochemical activity.Using it as negative electrode,a high energy efficiency(EE) of 79.0%can be achieved at a high current density of 160mA/cm~2,which is 5.5%higher than the pristine one.Moreover,the electrolyte utilization ratio is also increased by more than 30%.Even the cell operated at 140mA/cm2 for over 300 cycles,the EE can reach 80.9%without obvious fluctuation and attenuation,suggesting excellent catalytic activity and electrochemical stability in VFBs.  相似文献   

2.
The kinetics of the rapid reaction between Cr(aq)OO(2+) and NO were determined by laser flash photolysis of Cr(aq)NO(2+) in O(2)-saturated acidic aqueous solutions, k = 7 x 10(8) M(-1) s(-1) at 25 degrees C. The reaction produces an intermediate, believed to be NO(2), which was scavenged with ([14]aneN(4))Ni(2+). With limiting NO, the Cr(aq)OO(2+)/NO reaction has a 1:1 stoichiometry and produces both free NO(3)(-) and a chromium nitrato complex, Cr(aq)ONO(2)(2+). In the presence of excess NO, the stoichiometry changes to [NO]/[Cr(aq)OO(2+)] = 3:1, and the reaction produces close to 3 mol of nitrite/mol of Cr(aq)OO(2+). An intermediate, identified as a nitritochromium(III) ion, Cr(aq)ONO(2+), is a precursor to a portion of free NO(2)(-). In the proposed mechanism, the initially produced peroxynitrito complex, Cr(aq)OONO(2+), undergoes O-O bond homolysis followed by some known and some novel chemistry of Cr(aq)O(2+) and NO(2). The reaction between Cr(aq)O(2+) and NO generates Cr(aq)ONO(2+), k > 10(4) M(-1) s(-1). Cr(aq)OO(2+) reacts with NO(2) with k = 2.3 x 10(8) M(-1) s(-1).  相似文献   

3.
The reduction of ClO(2) to ClO(2)(-) by aqueous iron(II) in 0.5 M HClO(4) proceeds by both outer-sphere (86%) and inner-sphere (14%) electron-transfer pathways. The second-order rate constant for the outer-sphere reaction is 1.3 x 10(6) M(-1) s(-1). The inner-sphere electron-transfer reaction takes place via the formation of FeClO(2)(2+) that is observed as an intermediate. The rate constant for the inner-sphere path (2.0 x 10(5) M(-1) s(-1)) is controlled by ClO(2) substitution of a coordinated water to give an inner-sphere complex between ClO(2) and Fe(II) that very rapidly transfers an electron to give (Fe(III)(ClO(2)(-))(H(2)O)(5)(2+))(IS). The composite activation parameters for the ClO(2)/Fe(aq)(2+) reaction (inner-sphere + outer-sphere) are the following: DeltaH(r)++ = 40 kJ mol(-1); DeltaS(r)++ = 1.7 J mol(-1) K(-1). The Fe(III)ClO(2)(2+) inner-sphere complex dissociates to give Fe(aq)(3+) and ClO(2)(-) (39.3 s(-1)). The activation parameters for the dissociation of this complex are the following: DeltaH(d)++= 76 kJ mol(-1); DeltaS(d)++= 32 J K(-1) mol(-1). The reaction of Fe(aq)(2+) with ClO(2)(-) is first order in each species with a second-order rate constant of k(ClO2)- = 2.0 x 10(3) M(-1) s(-1) that is five times larger than the rate constant for the Fe(aq)(2+) reaction with HClO(2) in H(2)SO(4) medium ([H(+)] = 0.01-0.13 M). The composite activation parameters for the Fe(aq)(2+)/Cl(III) reaction in H(2)SO(4) are DeltaH(Cl(III))++ = 41 kJ mol(-1) and DeltaS(Cl(III))++ = 48 J mol(-1) K(-1).  相似文献   

4.
At pH = 1 and 25 degrees C, the Fenton-like reactions of Fe(aq)(2+) with hydroperoxorhodium complexes LRh(III)OOH(2+) (L = (H(2)O)(NH(3))(4), k = 30 M(-1) s(-1), and L = L(2) = (H(2)O)(meso-Me(6)-[14]aneN(4)), k = 31 M(-1) s(-1)) generate short-lived, reactive intermediates, believed to be the rhodium(IV) species LRh(IV)O(2+). In the rapid follow-up steps, these transients oxidize Fe(aq)(2+), and the overall reaction has the standard 2:1 [Fe(aq)(2+)]/[LRhOOH(2+)] stoichiometry. Added substrates, such as alcohols, aldehydes, and (NH(3))(4)(H(2)O)RhH(2+), compete with Fe(aq)(2+) for LRh(IV)O(2+), causing the stoichiometry to change to <2:1. Such competition data were used to determine relative reactivities of (NH(3))(4)RhO(2+) toward CH(3)OH (1), CD(3)OH (0.2), C(2)H(5)OH (2.7), 2-C(3)H(7)OH (3.4), 2-C(3)D(7)OH (1.0), CH(2)O (12.5), C(2)H(5)CHO (45), and (NH(3))(4)RhH(2+) (125). The kinetics and products suggest hydrogen atom abstraction for (NH(3))(4)RhO(2+)/alcohol reactions. A short chain reaction observed with C(2)H(5)CHO is consistent with both hydrogen atom and hydride transfer. The rate constant for the reaction between Tl(aq)(III) and L(2)Rh(2+) is 2.25 x 10(5) M(-1) s(-1).  相似文献   

5.
A novel effective co-reactant for electrogenerated chemiluminescence (ECL) of Ru(bpy)(3)(2+) has been found. Alpha-position-dialkylated thiophene derivatives such as 2,5-dimethylthiophene (DMT) could be used as a co-reactant for Ru(bpy)(3)(2+) ECL. The reaction mechanism of the Ru(bpy)(3)(2+)/DMT system was proposed on the basis of the identification of the reaction product, the relationship between the molecular structure and the chemiluminescent intensity, and the electrochemical study. The obtained reaction mechanism was similar to that of the Ru(bpy)(3)(2+)/aliphatic tertiary amine system. Based on these results, the preliminary studies of the Ru(bpy)(3)(2+) ECL detection system using DMT as a co-reactant were performed. Under the optimal ECL conditions, the plot of ECL intensity versus the concentration of Ru(bpy)(3)(2+) was linear over the concentration range 1.0x10(-8) to 1.5x10(-7) M (determination coefficient=0.9996).  相似文献   

6.
A tungsten trioxide (WO(3))/tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)(3)](2+); bpy=2,2'-bipyridine)/poly(sodium 4-styrenesulfonate) (PSS) hybrid film was prepared by electrodeposition from a colloidal triad solution containing peroxotungstic acid (PTA), [Ru(bpy)(3)](2+), and PSS. A binary solution of [Ru(bpy)(3)](2+) and PTA (30 vol % ethanol in water) gradually gave an orange precipitate, possibly caused by the electrostatic interaction between the cationic [Ru(bpy)(3)](2+) and the anionic PTA. The addition of PSS to the binary PTA/[Ru(bpy)(3)](2+) solution remarkably suppressed this precipitation and caused a stable, colloidal triad solution to form. The spectrophotometric measurements and lifetime analyses of the photoluminescence from the excited [Ru(bpy)(3)](2+) ion in the colloidal triad solution suggested that the [Ru(bpy)(3)](2+) ion is partially shielded from electrostatic interaction with anionic PTA by the anionic PSS polymer chain. The formation of the colloidal triad made the ternary [Ru(bpy)(3)](2+)/PTA/PSS solution much more redox active. Consequently, the rate of electrodeposition of WO(3) from PTA increased appreciably by the formation of the colloidal triad, and fast electrodeposition is required for the unique preparation of this hybrid film. The absorption spectrum of the [Ru(bpy)(3)](2+) ion in the film was close to its spectrum in water, but the photoexcited state of the [Ru(bpy)(3)](2+) ion was found to be quenched completely by the presence of WO(3) in the hybrid film. The cyclic voltammogram (CV) of the hybrid film suggested that the [Ru(bpy)(3)](2+) ion performs as it is adsorbed onto WO(3) during the electrochemical oxidation. An ohmic contact between the [Ru(bpy)(3)](2+) ion and the WO(3) surface could allow the electrochemical reaction of adsorbed [Ru(bpy)(3)](2+). The composition of the hybrid film, analyzed by electron probe microanalysis (EPMA), suggested that the positive charge of the [Ru(bpy)(3)](2+) ion could be neutralized by partially reduced WO(3)(-) ions, in addition to Cl(-) and PSS units, based on the charge balance in the film. The electrostatic interaction between the WO(3)(-) ion and the [Ru(bpy)(3)](2+) ion might be responsible for forming the electron transfer channel that causes the complete quenching of the photoexcited [Ru(bpy)(3)](2+) ion, as well as the formation of the ohmic contact between the [Ru(bpy)(3)](2+) ion and WO(3). A multicolor electrochromic performance of the WO(3)/[Ru(bpy)(3)](2+)/PSS hybrid film was observed, in which transmittances at 459 and 800 nm could be changed, either individually or at once, by the selection of a potential switch. Fast responses, of within a few seconds, to these potential switches were exhibited by the electrochromic hybrid film.  相似文献   

7.
Two water soluble Re(i) tricarbonyl diimine complexes containing cationic 2,2'-bipyridyl ligands [Re(L1)(CO)(3)(AN)](2+) (1) and [Re(L2)(CO)(3)(AN)](3+) (2) (L1 and L2: a cationic 2,2'-bipyridyl ligand, AN: acetonitrile) were synthesized and characterized. Their photophysical, electrochemical and electrochemiluminescent properties were investigated. The crystal structures of the two complexes have also been determined. Electrochemiluminescence (ECL) of the two complexes 1 and 2 have been studied in aqueous buffer solution in the presence of co-reactant tri-n-propylamine (TPrA) or 2-(dibutylamino)ethanol (DBAE) at a Au working electrode. The ECL behavior of the complexes was also studied in the presence of several surfactants such as Triton X-100 and Zonyl FSN. The ECL signals of the rhenium(i) complex were enhanced about 190-fold and 70-fold at a Au electrode in the presence of Triton X-100 for the [Re(L1)(CO)(3)(AN)](2+)/TPrA and [Re(L1)(CO)(3)(AN)](2+)/DBAE systems, respectively.  相似文献   

8.
Electrochemical cleavage of DNA in the presence of copper-sulfosalicylic acid [Cu(ssal)(2)(2+)] complex was studied. The cleavage was observed in a certain potential region where redox cycling of Cu(ssal)(2)(2+)/Cu(ssal)(2)(+) took place. Cu(ssal)(2)(2+) complex mediate generation of reactive oxygen species from O(2) by the Fenton reaction, these radicals are capable of damaging DNA. The cleaved DNA fragments were separated by high-performance liquid chromatography (HPLC). The experimental results indicated that the method for electrochemical cleavage of DNA by Cu(ssal)(2)(2+) complex was simple and efficient.  相似文献   

9.
Facile synthesis and characterization of the highly conducting, thermodynamically favored, Tl(TCNQ) phase II microrods/nanorods onto conducting (glassy carbon (GC)) and semiconducting (indium tin oxide (ITO)) surfaces have been accomplished via redox-based transformation of 7,7,8,8-tetracynoquinodimethane (TCNQ) microcrystals. This electrochemically irreversible process involves the one-electron reduction of surface-confined solid TCNQ into TCNQ·? with concomitant incorporation of the Tl+ (aq) cation, from the bulk solution, at the triple-phase boundary, GC or ITO│(TCNQ(s)/TCNQ·? (s))│Tl+ (aq), through a nucleation/growth mechanism. Consistent with the conceptually related M(TCNQ) systems (M+ = Li+, Na+, K+, Ag+, and Cu+), the TCNQ/Tl(TCNQ) interconversion is strongly dependent upon scan rate, Tl+ (aq) electrolyte concentration, and the method of attaching solid TCNQ onto the electrode surface. Spectroscopic (infrared (IR) and Raman), microscopic (scanning electron microscopy (SEM)), and surface science (X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD)) characterization of the electrochemically synthesized material revealed formation of pure Tl(TCNQ) phase II. Importantly, the generic solid-state electrochemical approach used in this study not only offers facile protocol for controllable and preferential synthesis of Tl(TCNQ) phase II but also provides access to fabricate and tune the morphology to yield microrod/nanorod networks.
Graphical abstract Controlled synthesis of the highly conducting Tl(TCNQ) phase II with either nanowire or rod-like morphologies is achieved via a redox-based solid-solid phase interconversion of TCNQ microcrystals in the presence of a Tl+ (aq) electrolyte.
  相似文献   

10.
Thallium(III) oxide can be dissolved in water in the presence of strongly complexing cyanide ions. Tl(III) is leached from its oxide both by aqueous solutions of hydrogen cyanide and by alkali-metal cyanides. The dominating cyano complex of thallium(III) obtained by dissolution of Tl2O3 in HCN is [Tl(CN)3(aq)] as shown by 205Tl NMR. The Tl(CN)3 species has been selectively extracted into diethyl ether from aqueous solution with the ratio CN-/Tl(III) = 3. When aqueous solutions of the MCN (M = Na+, K+) salts are used to dissolve thallium(III) oxide, the equilibrium in liquid phase is fully shifted to the [Tl(CN)4]- complex. The Tl(CN)3 and Tl(CN)4- species have for the first time been synthesized in the solid state as Tl(CN)3.H2O (1), M[Tl(CN)4] (M = Tl (2) and K (3)), and Na[Tl(CN)4].3H2O (4) salts, and their structures have been determined by single-crystal X-ray diffraction. In the crystal structure of 1, the thallium(III) ion has a trigonal bipyramidal coordination with three cyanide ions in the equatorial plane, while an oxygen atom of the water molecule and a nitrogen atom from a cyanide ligand, attached to a neighboring thallium complex, form a linear O-Tl-N fragment. In the three compounds of the tetracyano-thallium(III) complex, 2-4, the [Tl(CN)4]- unit has a distorted tetrahedral geometry. Along with the acidic leaching (enhanced by Tl(III)-CN- complex formation), an effective reductive dissolution of the thallium(III) oxide can also take place in the Tl2O3-HCN-H2O system yielding thallium(I), while hydrogen cyanide is oxidized to cyanogen. The latter is hydrolyzed in aqueous solution giving rise to a number of products including (CONH2)2, NCO-, and NH4+ detected by 14N NMR. The crystalline compounds, Tl(I)[Tl(III)(CN)4], Tl(I)2C2O4, and (CONH2)2, have been obtained as products of the redox reactions in the system.  相似文献   

11.
The aqueous iron(IV) ion, Fe(IV)(aq)O(2+), generated from O(3) and Fe(aq)(2+), reacts rapidly with various oxygen atom acceptors (sulfoxides, a water-soluble triarylphosphine, and a thiolatocobalt complex). In each case, Fe(IV)(aq)O(2+) is reduced to Fe(aq)(2+), and the substrate is oxidized to a product expected for oxygen atom transfer. Competition methods were used to determine the kinetics of these reactions, some of which have rate constants in excess of 10(7) M(-1) s(-1). Oxidation of dimethyl sulfoxide (DMSO) has k = 1.26 x 10(5) M(-1) s(-1) and shows no deuterium kinetic isotope effect, k(DMSO-d(6)) = 1.23 x 10(5) M(-1) s(-1). The Fe(IV)(aq)O(2+)/sulfoxide reaction is the product-forming step in a very efficient Fe(aq)(2+)-catalyzed oxidation of sulfoxides by ozone. This catalytic cycle, combined with labeling experiments in H(2)(18)O, was used to determine the rate constant for the oxo-group exchange between Fe(IV)(aq)O(2+) and solvent water under acidic conditions, k(exch) = 1.4 x 10(3) s(-1).  相似文献   

12.
The title cluster (Pd(3)(2+)) exhibits a pronounced affinity for Br(-) ions to form the very stable Pd(3)(Br)(+) adduct. Upon a 2-electron reduction, a dissociative process occurs generating Pd(3)(0) and eliminating Br(-) according to an ECE mechanism (electrochemical, chemical, electrochemical). At a lower temperature (i.e. -20 degrees C), both ECE and EEC processes operate. This cluster also activates the C-Br bond, and this work deals with the reactivity of Pd(3)(2+) with 2,3,4-tri-O-acetyl-5-thioxylopyranosyl bromide (Xyl-Br), both alpha- and beta-isomers. The observed inorganic product is Pd(3)(Br)(+) again, and it is formed according to an associative mechanism involving Pd(3)(2+).Xyl-Br host-guest assemblies. In an attempt to render the C-Br bond activation catalytic, these species are investigated under reduction conditions at two potentials (-0.9 and -1.25 V vs SCE). In the former case, the major product is Xyl-H, issued from a radical intermediate Xyl(*) abstracting an H atom from the solvent. Evidence for Xyl(*) is provided by the trapping with TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) and DMPO (5,5'-dimethylpyrroline-N-oxyde). In the second case, only one product is observed, 3,4-di-O-acetyl-5-thioxylal, which is issued from the Xyl(-)() intermediate anion.  相似文献   

13.
The reaction of Ln(NO(3))(3).aq with K(3)[Fe(CN)(6)] or K(3)[Co(CN)(6)] and 2,2'-bipyridine in water led to five one-dimensional complexes: trans-[M(CN)(4)(mu-CN)(2)Ln(H(2)O)(4) (bpy)](n)().XnH(2)O.1.5nbpy (M = Fe(3+) or Co(3+); Ln = Sm(3+), Gd(3+), or Yb(3+); X = 4 or 5). The structures for [Fe(3)(+)-Sm(3+)] (1), [Fe(3)(+)-Gd(3+)] (2), [Fe(3)(+)-Yb(3+)] (3), [Co(3)(+)-Gd(3+)] (4), and [Co(3)(+)-Yb(3+)] (5) have been solved; they crystallize in the triclinic space P1 and are isomorphous. The [Fe(3+)-Sm(3+)] complex is a ferrimagnet, its magnetic studies suggesting the onset of weak ferromagnetic 3-D ordering at 3.5 K. The [Fe(3+)-Gd(3+)] interaction is weakly antiferromagnetic. The isotropic nature of Gd(3+) allowed us to evaluate the exchange interaction (J = 0.77 cm(-)(1)).  相似文献   

14.
The stoichiometric and catalytic activations of alkyl halides and acid chlorides by the unsatured Pd(3)(dppm)(3)(CO)(2+) cluster (Pd(3)(2+)) are investigated in detail. A series of alkyl halides (R-X; R = t-Bu, Et, Pr, Bu, allyl; X = Cl, Br, I) react slowly with Pd(3)(2+) to form the corresponding Pd(3)(X)(+) adduct and "R(+)". This activation can proceed much faster if it is electrochemically induced via the formation of the paramagnetic species Pd(3)(+). The latter is the first confidently identified paramagnetic Pd cluster. The kinetic constants extracted from the evolution of the UV-vis spectra for the thermal activation, as well as the amount of electricity to bring the activation to completion for the electrochemically induced reactions, correlate the relative C-X bond strength and the steric factors. The highly reactive "R(+)" species has been trapped using phenol to afford the corresponding ether. On the other hand, the acid chlorides react rapidly with Pd(3)(2+) where no induction is necessary. The analysis of the cyclic voltammograms (CV) establishes that a dissociative mechanism operates (RCOCl --> RCO(+) + Cl(-); R = t-Bu, Ph) prior to Cl(-) scavenging by the Pd(3)(2+) species. For the other acid chlorides (R = n-C(6)H(13), Me(2)CH, Et, Me, Pr), a second associative process (Pd(3)(2+) + RCOCl --> Pd(3)(2+.....)Cl(CO)(R)) is seen. Addition of Cu(NCMe)(4)(+) or Ag(+) leads to the abstraction of Cl(-) from Pd(3)(Cl)(+) to form Pd(3)(2+) and the insoluble MCl materials (M = Cu, Ag) allowing to regenerate the starting unsaturated cluster, where the precipitation of MX drives the reaction. By using a copper anode, the quasi-quantitative catalytic generation of the acylium ion ("RCO(+)") operates cleanly and rapidly. The trapping of "RCO(+)" with PF(6)(-) or BF(4)(-) leads to the corresponding acid fluorides and, with an alcohol (R'OH), to the corresponding ester catalytically, under mild conditions. Attempts were made to trap the key intermediates "Pd(3)(Cl)(+)...M(+)" (M(+) = Cu(+), Ag(+)), which was successfully performed for Pd(3)(ClAg)(2+), as characterized by (31)P NMR, IR, and FAB mass spectrometry. During the course of this investigation, the rare case of PF(6)(-) hydrolysis has been observed, where the product PF(2)O(2)(-) anion is observed in the complex Pd(3)(PF(2)O(2))(+), where the substrate is well-located inside the cavity formed by the dppm-Ph groups above the unsatured face of the Pd(3)(2+) center. This work shows that Pd(3)(2+) is a stronger Lewis acid in CH(2)Cl(2) and THF than AlCl(3), Ag(+), Cu(+), and Tl(+).  相似文献   

15.
The aquachromyl(IV) ion, Cr(aq)O(2+), reacts with acetaldehyde and pivaldehyde by hydrogen atom abstraction and, in the presence of O(2), produces acylperoxyl radicals, RC(O)OO(*). In the next step, the radicals react with Cr(aq)OO(2+), a species accompanying Cr(aq)O(2+) in our preparations. The rate constant for the Cr(aq)OO(2+)/CH(3)C(O)OO(*) cross reaction, k(Cr) = 1.5 x 10(8) M(-1) s(-1), was determined by laser flash photolysis. The evidence points to radical coupling at the remote oxygen of Cr(aq)OO(2+), followed by elimination of O(2) and formation of CH(3)COOH and Cr(V)(aq)O(3+). The latter disproportionates and ultimately yields Cr(aq)(3+) and HCrO(4)(-). No CO(2) was detected. The Cr(aq)OO(2+)/C(CH(3))(3)C(O)OO(*) reaction yielded isobutene, CO(2), and Cr(aq)(3+), in addition to chromate. In the suggested mechanism, the transient Cr(aq)OOOO(O)CC(CH(3))(3)(2+) branches into two sets of products. The path leading to chromate resembles the CH(3)C(O)OO(*) reaction. The other products arise from an unprecedented intramolecular hydrogen transfer from the tert-butyl group to the CrO entity and elimination of CO(2) and O(2). A portion of C(CH(3))(3)C(O)OO(*) was captured by (CH(3))(3)COO(*), which was in turn generated by decarbonylation of acyl radicals and oxygenation of tert-butyl radicals so formed.  相似文献   

16.
Koppenol WH 《Inorganic chemistry》2012,51(10):5637-5641
Nitrosothiols are powerful vasodilators. Although the mechanism of their formation near neutral pH is an area of intense research, neither the energetics nor the kinetics of this reaction or of subsequent reactions have been addressed. The following considerations may help to guide experiments. (1) The standard Gibbs energy for the homolysis reaction RSNO → RS(?) + NO(?)(aq) is +110 ± 5 kJ mol(-1). (2) The electrode potential of the RSNO, H(+)/RSH, NO(?)(aq) couple is -0.20 ± 0.06 V at pH 7. (3) Thiol nitrosation by NO(2)(-) is favorable by 37 ± 5 kJ mol(-1) at pH 7. (4) N(2)O(3) is not involved in in vivo nitrosation mechanisms for thermodynamic--its formation from NO(2)(-) costs 59 kJ mol(-1)--or kinetic--the reaction being second-order in NO(2)(-)--reasons. (5) Hemoglobin (Hb) cannot catalyze formation of N(2)O(3), be it via the intermediacy of the reaction of Hb[FeNO(2)](2+) with NO(?) (+81 kJ mol(-1)) or reaction of Hb[FeNO](3+) with NO(2)(-) (+88 kJ mol(-1)). (6) Energetically and kinetically viable are nitrosations that involve HNO(2) or NO(?) in the presence of an electron acceptor with an electrode potential higher than -0.20 V. These considerations are derived from existing thermochemical and kinetics data.  相似文献   

17.
Hansen G  Gervang B  Lund T 《Inorganic chemistry》2003,42(18):5545-5550
The bis tetrabutylammonium salt of the solar cell dye, L(2)Ru(NCS)(2), ((Bu(4)N(+))(2) [Ru(dcbpyH)(2)(NCS)(2)](2-)), was oxidized electrochemically in both dimethylformamide and acetonitrile. Four different ruthenium complexes were identified by LC-UV/Vis-MS during the electrochemical oxidation process in dimethylformamide. The formation of the four complexes may be explained by a competition between a solvent-independent route with the formation of the intermediate complex L(2)Ru(NCS)(CN) and the final oxidation product L(2)Ru(CN)(2) and a solvent-dependent route, which proceeds through the intermediate complex L(2)Ru(NCS)(DMF)(+) to the final product L(2)Ru(CN)(DMF)(+). In acetonitrile the solvent-dependent mechanism is dominant and only the oxidation products L(2)Ru(NCS)(ACN)(+) and L(2)Ru(CN)(ACN)(+) were identified.  相似文献   

18.
The stability of a graphite felt electrode modified by covalent attachment of [Ru(II)(tpy)(bpy)(OH(2))](2+) is investigated during the indirect electrolyses of alcohols in a flow cell. The continuous increase of the local potential of the electrode during the electrolyses attests to its degradation. Cyclic voltammetry analyses of the modified electrode after electrolyses show a total decrease of 80-90% of the wave corresponding to the Ru(III/II) couple. The concentration of remaining alcohol measured at the outlet of the cell is almost constant during all the electrolyses but increase when the potential exceeds 0.95 V(SCE). At low potentials, the electrode can be regenerated by reaction with Ru(II)Cl(2)(DMSO)(tpy) and then CF(3)SO(3)H, followed by hydrolysis, showing that the bipyridine ligand remains covalently attached to the electrode. At high potentials, the graphite is oxidized and the catalyst is partly lost in the reaction medium. XPS analyses of Ru core levels reveal that the ruthenium disappeared after electrolysis, showing that the degradation of the modified electrode is due to the demetalation of the oxidized complex.  相似文献   

19.
Electroactive planar waveguide (EAPW) instrumentation was used to perform potential modulated absorbance (PMA) experiments at indium tin oxide (ITO) electrodes coated with 0-, 300-, 800-, and 1200-nm-thick SWy-1 montmorillonite clay. PMA experiments performed at low potential modulation monitor mass transport events within 100 nm of the ITO surface and, thus, when used in conjunction with cyclic voltammetry (CV), can elucidate charge transport mechanisms. The data show that at very thin films electron transfer is controlled by electron hopping (sensitive to the anion species in the electrolyte) in an adsorbed Ru(bpy)(3)(2+) layer. As the thickness of the clay film grows, electron transfer may become controlled by mass transfer of Ru(bpy)(3)(2+) within the clay film to and from the electrode surface, a mechanism that is affected by the swelling of the film. Film swelling is controlled by the cation of the electrolyte. Films loaded with Ru(bpy)(3)(2+) while being subjected to evanescent wave stimulation demonstrate a large hydrophobic layer. The growth of the hydrophobic layer is attributed to the formation of Ru(bpy)(3)(2+*), which has negative charge located at the periphery of the molecule enhancing clay/complex repulsion. The results suggest that the structure of the film and the mechanism of charge transport can be rationally controlled. Simultaneous measurements of the ingress of Ru(bpy)(3)(2+) into the clay film by CV and PMA provide a means to determine the diffusion coefficient of the complex.  相似文献   

20.
A new capillary electrophoresis-electrochemiluminescence (ECL) detection system equipped with an electrically heated Ru(bpy)(3)(2+)/multi-wall-carbon-nanotube paste electrode (Ru(bpy)(3)(2+)/MWNTPE) was developed. Ru(bpy)(3)(2+) was immobilized in the electrode by directly mixing with the multi-wall-carbon-nanotube paste (MWNTP). This modified electrode could be electrically heated and temperature of the electrode (Te) could be accurately controlled. Tri-n-propylamine (TPrA) was used as coreactant to investigate CE-ECL signals under different conditions. Compared with the conventional electrode at room temperature, the heated electrode has been shown to provide some advantages, such as higher sensitivity, lower RSD, and decreasing width of the peak. Furthermore, wider range of capillary-to-electrode distance and larger-area electrode are a benefit to CE-ECL. In addition, this system has been applied to separation and detection of acephate and dimethoate. The results indicated that the present CE-ECL system coupled with heated modified-electrode could provide high sensitivity, wide linear range, satisfying linear relationship and excellent reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号