首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Addition of isonicotinic acid NC(5)H(4)CO(2)H (or isonicH) to [Pt(dppf)(MeCN)(2)](2+)2OTf(-)(dppf = 1,1'-bis(diphenylphosphino)ferrocene, OTf = triflate) affords a mixture of the homometallic molecular square [Pt(4)(dppf)(4)(mu-O(2)CC(5)H(4)N)(4)](4+)4OTf(-), 1 and its precursor intermediate [Pt(dppf)(eta(1)-NC(5)H(4)CO(2)H)(2)](2+)2OTf(-), 2. The latter captures [Pd(dppf)(MeCN)(2)](2+)2OTf(-) to give a heterometallic square, [Pt(2)Pd(2)(dppf)(4)(mu-O(2)CC(5)H(4)N)(4)](4+)4OTf(-), 3. Slight skeletal modification of the ligand leads to different assemblies. This is illustrated by the addition of NC(5)H(4)CH(2)CO(2)H.HCl to [Pt(dppf)(MeCN)(2)](2+)2OTf(-) to give [PtCl(dppf)(NC(5)H(4)CH(2)CO(2)H)](+)OTf(-), 4, which reacts with another equivalent of AgOTf to yield the dibridged complex [Pt(2)(dppf)(2)(mu-NC(5)H(4)CH(2)CO(2))(2)](2+)2OTf(-), 5. All complexes, with the exception of , have been structurally characterized by single-crystal X-ray crystallography. Complexes 2 and 4 are potential precursors to further molecular topologies.  相似文献   

2.
[PPh4]2[M(C2N2S2)2](M = Pt, Pd) and [Pt(C2N2S2)(PR3)2](PR3= PMe2Ph, PPh3) and [Pt(C2N2S2)(PP)](PP = dppe, dppm, dppf) were all obtained by the reaction of the appropriate metal halide containing complex with potassium cyanodithioimidocarbonate. The dimeric cyanodithioimidocarbonate complexes [[Pt(C2N2S2)(PR3)]2](PR3 = PMe2Ph), [M[(C2N2S2)(eta5-C5Me5)]2](M = Rh, Ir)and [[Ru(C2N2S2)(eta6-p-MeC6H4iPr)]2] have been synthesised from the appropriate transition metal dimer starting material. The cyanodithioimidocarbonate ligand is S,S and bidentate in the monomeric complexes with the terminal CN group being approximately coplanar with the CS2 group and trigonal at nitrogen thus reducing the planar symmetry of the ligand. In the dimeric compound one of the sulfur atoms bridges two metal atoms with the core exhibiting a cubane-like geometry.  相似文献   

3.
The reactions of the hydroxo complexes [M(2)R(4)(mu-OH)(2)](2)(-) (M = Pd, R = C(6)F(5), C(6)Cl(5); M = Pt, R = C(6)F(5)), [[PdR(PPh(3))(mu-OH)](2)] (R = C(6)F(5), C(6)Cl(5)), and [[Pt(C(6)F(5))(2)](2)(mu-OH)(mu-pz)](2-) (pz = pyrazolate) with H(2)S yield the corresponding hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-), [[PdR(PPh(3))(mu-SH)](2)], and [[Pt(C(6)F(5))(2)](2)(mu-SH)(mu-pz)](2-), respectively. The monomeric hydrosulfido complexes [M(C(6)F(5))(2)(SH)(PPh(3))](-) (M = Pd, Pt) have been prepared by reactions of the corresponding binuclear hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-) with PPh(3) in the molar ratio 1:2, and they can be used as metalloligands toward Ag(PPh(3))(+) to form the heterodinuclear complex [(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and toward Au(PPh(3))(+) yielding the heterotrinuclear complexes [M(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]]. The crystal structures of [NBu(4)](2)[[Pt(C(6)F(5))(2)(mu-SH)](2)], [Pt(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and [Pt(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]] have been established by X-ray diffraction and show no short metal-metal interactions between the metallic centers.  相似文献   

4.
Teo P  Koh LL  Hor TS 《Inorganic chemistry》2003,42(22):7290-7296
Dinuclear Pt(2)Br(2)(dppf)(2)(mu-C(8)H(4)S(2)) exchanges with isonicotinic acid to release free bithiophene and gives a molecular square [Pt(4)(dppf)(4)(mu(2)-O(2)CC(5)H(4)N)(4)](4+)4OTf(-) which is an "all-ring" system with four Pt rings disposed at the corners of a larger macrocyclic ring. The related mononuclear complex PtBr(eta(1)(C2)-C(4)H(3)S)(dppf) reacts with AgOTf (OTf = triflate) to give [Pt(2)(dppf)(2)(mu(2),eta(1)(C),eta(1)(S)-C(4)H(3)S)(2)](2+)2OTf(-) with an unusual six-membered ring formed by the fusion of two Pt-thienyl entities at the sulfur sites. All the complexes are structurally characterized by single-crystal X-ray crystallography.  相似文献   

5.
A new carbazole-based 90° dipyridyl donor 3,6-di(4-pyridylethynyl)carbazole (L) containing carbazole-ethynyl functionality is synthesized in reasonable yield using the Sonagashira coupling reaction. Multinuclear NMR, electrospray ionization-mass spectrometry (ESI-MS), including single crystal X-ray diffraction analysis characterized this 90° building unit. The stoichiometry combination of L with several Pd(II)/Pt(II)-based 90° acceptors (1a-1d) yielded [2 + 2] self-assembled metallacycles (2a-2d) under mild conditions in quantitative yields [1a = cis-(dppf)Pd(OTf)(2); 1b = cis-(dppf)Pt(OTf)(2); 1c = cis-(tmen)Pd(NO(3))(2); 1d = 3,6-bis{trans-Pt(C≡C)(PEt(3))(2)(NO(3))}carbazole]. All these macrocycles were characterized by various spectroscopic techniques, and the molecular structure of 2a was unambiguously determined by single crystal X-ray diffraction analysis. Incorporation of ethynyl functionality to the carbazole backbone causes the resulted macrocycles (2a-2d) to be π-electron rich and thereby exhibit strong emission characteristics. The macrocycle 2a has a large internal concave aromatic surface. The fluorescence quenching study suggests that 2a forms a ~1:1 complex with C(60) with a high association constant of K(sv) = 1.0 × 10(5) M(-1).  相似文献   

6.
The reactions of [Tl(2)[S(2)C=C[C(O)Me](2)]](n) with [MCl(2)(NCPh)(2)] and CNR (1:1:2) give complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)(2)] [R = (t)Bu, M = Pd (1a), Pt (1b); R = C(6)H(3)Me(2)-2,6 (Xy), M = Pd (2a), Pt (2b)]. Compound 1b reacts with AgClO(4) (1:1) to give [[Pt(CN(t)Bu)(2)](2)Ag(2)[mu(2),eta(2)-(S,S')-[S(2)C=C[C(O)Me](2)](2)]](ClO(4))(2) (3). The reactions of 1 or 2 with diethylamine give mixed isocyanide carbene complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)[C(NEt(2))(NHR)]] [R = (t)Bu, M = Pd (4a), Pt (4b); R = Xy, M = Pd (5a), Pt (5b)] regardless of the molar ratio of the reagents. The same complexes react with an excess of ammonia to give [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)](CN(t)Bu)[C(NH(2))(NH(t)Bu)]] [M = Pd (6a), Pt (6b)] or [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)][C(NH(2))(NHXy)](2)] [M = Pd (7a), Pt (7b)] probably depending on steric factors. The crystal structures of 2b, 4a, and 4b have been determined. Compounds 4a and 4b are isostructural. They all display distorted square planar metal environments and chelating planar E,Z-2,2-diacetyl-1,1-ethylenedithiolato ligands that coordinate through the sulfur atoms.  相似文献   

7.
The self-assembly of open ditopic and tetratopic cavitand complexes has been investigated by using monofunctionalized cavitand ligands and suitable metal precursors. In the case of ditopic complexes, self-assembly protocols, leading exclusively to the formation of both thermodynamically stable cis-Pt square-planar complexes 8 and 9 and the kinetically inert fac-Re octahedral complex 14, have been elaborated. The use of cis-[Pt(CH3)CN)2Cl2] as metal precursor led to the formation of monotopic trans-10 and ditopic trans-11 cavitand complexes, while cis-[Pt(dmso)2Cl2] afforded both cis-13 and trans-11 isomers. The self-assembly of tetratopic cavitand complexes has been achieved by using mononuclear [Pd(CH3CN)4(BF4)2] and dinuclear [M2(tppb)(OTf)4] (19: M = Pt; 20: M = Pd) metal precursors. Only the tetratopic dinuclear complexes 21 and 22 were stable. The ligand configuration with two phosphorus and two cavitand ligands at the metal centers is the most appropriate to build tetratopic cavitand complexes with sufficient kinetic stability.  相似文献   

8.
Cyclodiphosphazanes having hemilabile ponytails such as cis-[(t)()BuNP(OC(6)H(4)OMe-o)](2) (2), cis-[(t)()BuNP(OCH(2)CH(2)OMe)](2) (3), cis-[(t)BuNP(OCH(2)CH(2)SMe)](2) (4), and cis-[(t)BuNP(OCH(2)CH(2)NMe(2))](2) (5) were synthesized by reacting cis-[(t)()BuNPCl](2) (1) with corresponding nucleophiles. The reaction of 2 with [M(COD)Cl(2)] afforded cis-[MCl(2)(2)(2)] derivatives (M = Pd (6), Pt (7)), whereas, with [Pd(NCPh)(2)Cl(2)], trans-[MCl(2)(2)(2)] (8) was obtained. The reaction of 2 with [Pd(PEt(3))Cl(2)](2), [{Ru(eta(6)-p-cymene)Cl(2)](2), and [M(COD)Cl](2) (M = Rh, Ir) afforded mononuclear complexes of Pd(II) (9), Ru(II) (11), Rh(I) (12), and Ir(I) (13) irrespective of the stoichiometry of the reactants and the reaction condition. In the above complexes the cyclodiphosphazane acts as a monodentate ligand. The reaction of 2 with [PdCl(eta(3)-C(3)H(5))](2) afforded binuclear complex [(PdCl(eta(3)-C(3)H(5)))(2){((t)BuNP(OC(6)H(4)OMe-o))(2)-kappaP}] (10). The reaction of ligand 3 with [Rh(CO)(2)Cl](2) in 1:1 ratio in CH(3)CN under reflux condition afforded tetranuclear rhodium(I) metallamacrocycle (14), whereas the ligands 4 and 5 afforded bischelated binuclear complexes 15 and 16, respectively. The crystal structures of 8, 9, 12, 14, and 16 are reported.  相似文献   

9.
A series of L(2) = diimine (Bian = bis(3,5-diisopropylphenylimino)acenapthene, Bu(t)(2)bpy = 4,4'-di-tert-butyl-2,2'-bipyridine) supported aqua, hydroxo, oxo, amido, imido, and mixed complexes have been prepared. Deprotonation of [L(2)Pt(mu-OH)](2)(2+) with 1,8-bis(dimethylamino)naphthalene, NaH, or KOH yields [(L(2)Pt)(2)(mu-OH)(mu-O)](+) as purple (Bian) or red (Bu(t)(2)bpy) solids. Excess KOH gives dark blue [(Bian)Pt(mu-O)](2). MeOTf addition to [(Bu(t)(2)bpy)(2)Pt(2)(mu-OH)(mu-O)](+) gives [(Bu(t)(2)bpy)(2)Pt(2)(mu-OH)(mu-OMe)](2+) while [(Bian)Pt(mu-O)](2) yields [(Bian)(2)Pt(2)(mu-OMe)(mu-O)](+). Treatment of [(Bian)Pt(mu-O)](2) with "(Ph(3)P)Au(+)" gives deep purple [(Bian)(2)Pt(2)(mu-O)(mu-OAuPPh(3))](+) while (COD)Pt(OTf)(2) gives a low yield of [(Bian)Pt(3)(mu-OH)(3)(COD)(2)](OTf)(3). Ni(Bu(t)(2)bpy)Cl(2) and [(Ph(3)PAu)(3)(mu-O)](+) in a 3 : 2 ratio yield red [Ni(3)(Bu(t)(2)bpy)(3)(mu-O)(2)](2+). M(Bu(t)(2)bpy)Cl(2) (M = Pd, Pt) and [(Ph(3)PAu)(3)(mu-O)](+) give [M(Bu(t)(2)bpy)(mu-OAuPPh(3))](2)(2+) and [Pd(4)(Bu(t)(2)bpy)(4)(mu-OAuPPh(3))](3+). Addition of ArNH(2) to [M(Bu(t)(2)bpy)(mu-OH)](2)(2+) (M = Pd, Pt) gives [Pt(2)(Bu(t)(2)bpy)(2)(mu-NHAr)(mu-OH)](2+) (Ar = Ph, 4-tol, 4-C(6)H(4)NO(2)) and [M(Bu(t)(2)bpy)(mu-NHAr)](2)(2+) (Ar = Ph, tol). Deprotonation of [Pt(2)(Bu(t)(2)bpy)(2)(mu-NH-tol)(mu-OH)](2+) with 1,8-bis(dimethylamino)naphthalene or NaH gives [Pt(2)(Bu(t)(2)bpy)(2)(mu-NH-tol)(mu-O)](+). Deprotonation of [Pt(Bu(t)(2)bpy)(mu-NH-tol)](2)(2+) with KOBu(t) gives deep green [Pt(Bu(t)(2)bpy)(mu-N-tol)](2). The triflate complexes M(Bu(t)(2)bpy)(OTf)(2) (M = Pd, Pt) are obtained from M(Bu(t)(2)bpy)Cl(2) and AgOTf. Treatment of Pt(Bu(t)(2)bpy)(OTf)(2) with water gives the aqua complex [Pt(Bu(t)(2)bpy)(H(2)O)(2)](OTf)(2).  相似文献   

10.
The bis(PNP)-donor pincer ligand 1,4-C(6)H(4){N(CH(2)CH(2)PPh(2))(2)}(2), 1, contains weakly basic nitrogen donor atoms because the lone pairs of electrons are conjugated to the bridging phenylene group, and this feature is used in the synthesis of oligomers and polymers. The complexes [Pd(2)X(2)(mu-1)](OTf)(2), X=Cl, Br or OTf, contain the ligand 1 in bis(pincer) binding mode (mu-kappa(6)-P(4)N(2)), but [Pd(4)Cl(6)(mu(3-)1)(2)]Cl(2) contains the ligand in an unusual unsymmetrical mu(3)-kappa(5)-P(4)N binding mode. The bromide complex is suggested to exist as a polymer [{Pd(2)Br(4)(mu(4)-1)}(n)] with the ligands 1 in mu(4)-kappa(4)-P(4) binding mode. The methylplatinum(II) complexes [Pt(2)Me(4)(mu-1)] and [Pt(2)Me(2)(mu-1)](O(2)CCF(3))(2) contain the ligand in mu-kappa(4)-P(4) and mu-kappa(6)-P(4)N(2) bonding modes, while the silver(I) complex [Ag(2)(O(2)CCF(3))(2) (mu-1)] contains the ligand 1 in an intermediate bonding mode in which the nitrogen donors are very weakly coordinated. The complexes [Pd(2)(OTf)(2)(mu-1)](OTf)(2) and [Ag(2)(O(2)CCF(3))(2)(mu-1)] react with 4,4'-bipyridine to give polymers [Pd(2)(micro-bipy)(mu-1)](OTf)(4) and [Ag(2)(mu-bipy)(mu-1)](O(2)CCF(3))(2).  相似文献   

11.
Treatment of L(2)MCl(2) (M = Pt, Pd; L(2) = Ph(2)PCMe(2)PPh(2) (dppip), Ph(2)PNMePPh(2) (dppma)) with AgX (X = OTf, BF(4), NO(3)) in wet CH(2)Cl(2) yields the dinuclear dihydroxo complexes [L(2)M(mu-OH)](2)(X)(2), the mononuclear aqua complexes [L(2)M(OH(2))(2)](X)(2), the mononuclear anion complexes L(2)MX(2), or mixtures of complexes. Addition of aromatic amines to these complexes or mixtures gives the dinuclear diamido complexes [L(2)Pt(mu-NHAr)](2)(BF(4))(2), the mononuclear amine complexes [L(2)M(NH(2)Ar)(2)](X)(2), or the dinuclear amido-hydroxo complex [Pt(2)(mu-OH)(mu-NHAr)(dppip)(2)](BF(4))(2). Deprotonation of the Pd and Pt amine or diamido complexes with M'N(SiMe(3))(2) (M' = Li, Na, K) gives the diimido complexes [L(2)M(mu-NAr)](2) associated with M' salts. Structural studies of the Li derivatives indicate association through coordination of the imido nitrogen atoms to Li(+). Deprotonation of the amido-hydroxo complex gives the imido-oxo complex [Pt(2)(mu-O)(mu-NAr)(dppip)(2)].LiBF(4).LiN(SiMe(3))(2), and deprotonation of the dppip Pt hydroxo complex gives the dioxo complex [Pt(mu-O)(dppip)](2).LiN(SiMe(3))(2).2LiBF(4).  相似文献   

12.
Attempted thallium triflate abstraction of chloride anions from the MCl(2) complexes of the unsaturated chelating diphosphines o-dimethyl-bis(diphenylphosphino)tetrathiafulvalene (P2) (M = Pd, Pt) and cis-1,2-bis(diphenylphosphino)ethylene (dppen) (M = Pd) affords, surprisingly, a Tl(OTf) adduct in the case of (P2)PdCl(2) and (P2)PtCl(2), with no chloride abstraction, and a dicationic bis(palladium) bis(triflate) salt in the case of (cis-dppen)PdCl(2), in which only one Cl anion was removed. The crystal structures of these complexes were determined by X-ray analysis, which established the formulations (P2)MCl(2).Tl(OTf) (M = Pd, Pt) and [(dppen)PdCl](2)(OTf)(2), respectively. These compounds can be seen as possible intermediates in the general chloride abstraction process between (P-P)MCl(2) (M = Pd, Pt) and thallium triflate.  相似文献   

13.
A series of chiral M(6)M'(8) cluster compounds having twelve free carboxylate groups, [M(6)M'(8)(D-pen-N,S)(12)X](5-) (M/M'/X = Pd(II)/Ag(I)/Cl(-) ([1](5-)), Pd(II)/Ag(I)/Br(-) ([2](5-)), Pd(II)/Ag(I)/I(-) ([3](5-)), Ni(II)/Ag(I)/Cl(-) ([4](5-)), Pt(II)/Ag(I)/Cl(-) ([5](5-)), Pd(II)/Cu(I)/Cl(-) ([6](5-)); D-H(2)pen = D-penicillamine), in which six cis-[M(D-pen-N,S)(2)](2-) square-planar units are bound to a [M'(8)X](7+) cubic core through sulfur-bridges, was synthesized by the reactions of cis-[M(D-pen-N,S)(2)](2-) with M' in water in the presence of halide ions. These M(6)M'(8) clusters readily reacted with La(3+) in aqueous buffer to form La(III)(2)M(6)M'(8) heterotrimetallic compounds, La(2)[1](CH(3)COO), La(2)[2](CH(3)COO), La(2)[3](CH(3)COO), La(2)[4](CH(3)COO), La(2)[5](CH(3)COO) and La(2)[6]Cl, in which the M(6)M'(8) cluster units are linked by La(3+) ions through carboxylate groups in a 1?:?2 ratio. While the La(III)(2)M(6)Ag(I)(8) compounds derived from [1](5-), [2](5-), [3](5-), [4](5-) and [5](5-) have a 1D helix supramolecular structure with a right-handedness, the La(III)(2)Pd(II)(6)Cu(I)(8) compound derived from [6](5-) has a 2D sheet-like structure with a triangular grid of the Pd(II)(6)Cu(I)(8) cluster units. When aqueous HCl was added to the reaction solution of [6](5-) and La(3+), another La(III)(2)Pd(II)(6)Cu(I)(8) heterotrimetallic compound, La(2)[6]Cl·HCl, in which the Pd(II)(6)Cu(I)(8) cluster units are linked by La(3+) ions to form a 2D structure with a rectangular grid, was produced. The solid-state structures of these La(III)(2)M(6)M'(8) compounds, determined by single-crystal X-ray crystallography, along with the spectroscopic properties of the M(6)M'(8) cluster compounds in solution, are described.  相似文献   

14.
The new pro-ligand 4-methyl-4'-(carbonylamino(2-(tert-butoxycarbonylamino)ethyl))-2,2'-bipyridyl (L1) has been prepared and used to synthesise the complex fac-Re(I)Cl(CO)3(L1) 1 and the complex salts [M(II)(bipy)2(L1)](PF6)2 (M=RuII 8 or OsII 15). Deprotection with trifluoroacetic acid affords the amine-functionalised derivatives fac-Re(I)Cl(CO)3(L2) 2, [M(II)(bipy)2(L2)](PF6)2 (M=RuII 9 or OsII 16) which react with the dianhydride of diethylenetriamine pentaacetic acid (DTPA) to give the binuclear complex {fac-Re(I)Cl(CO)3}2(L3) 3 and the complex salts [{M(II)(bipy)2}2(L3)](PF6)4 (M = RuII 10 or OsII 17). The latter react with salts Ln(OTf)3 to afford a series of 12 heterotrimetallic compounds that contain a lanthanide (Ln) ion in the DTPA binding site; {fac-Re(I)Cl(CO)3}2(L3)LnIII (Ln=Nd 4, Er 5, Yb 6 or Y 7) and [{M(II)(bipy)2}2(L3)LnIII](PF6)(OTf)3 (M=RuII, Ln=Nd 11, Er 12, Yb 13 or Y 14; M=OsII, Ln=Nd 18, Er 19, Yb 20 or Y 21). All of these trimetallic species display absorption bands ascribed to metal-to-ligand charge-transfer (MLCT) excitations, and luminescence measurements show that these excited states can be used to sensitise near-infrared emission from LnIII (Ln=Nd, Er or Yb) ions. Single crystal X-ray structures of L1 and [RuII(bipy)2(L2H)](H2PO4)3.(CH3)2CO.0.8H2O were obtained, the latter revealing the presence of H2PO4- counter anions, the source of which is presumed to be hydrolysis of PF6- ions.  相似文献   

15.
Reactions of the anionic gallium(i) heterocycle, [:Ga{[N(Ar)C(H)](2)}](-) (Ar = C(6)H(3)Pr(i)(2)-2,6), with a variety of mono- and bidentate phosphine, tmeda and 1,5-cyclooctadiene (COD) complexes of group 10 metal dichlorides are reported. In most cases, salt elimination occurs, affording either mono(gallyl) complexes, trans-[MCl{Ga{[N(Ar)C(H)](2)}}(PEt(3))(2)] (M = Ni or Pd) and cis-[PtCl{Ga{[N(Ar)C(H)](2)}}(L)] (L = R(2)PCH(2)CH(2)PR(2), R = Ph (dppe) or cyclohexyl (dcpe)), or bis(gallyl) complexes, trans-[M{Ga{[N(Ar)C(H)](2)}}(2)(PEt(3))(2)] (M = Ni, Pd or Pt), cis-[Pt{Ga{[N(Ar)C(H)](2)}}(2)(PEt(3))(2)], cis-[M{Ga{[N(Ar)C(H)](2)}}(2)(L)] (M = Ni, Pd or Pt; L = dppe, Ph(2)CH(2)PPh(2) (dppm), tmeda or COD). The crystallographic and spectroscopic data for the complexes show that the trans-influence of the gallium(i) heterocycle lies in the series, B(OR)(2) > H(-) > PR(3) approximately [:Ga{[N(Ar)C(H)](2)}](-) > Cl(-). Comparisons between the reactivity of one complex, [Pt{Ga{[N(Ar)C(H)](2)}}(2)(dppe)], with that of closely related platinum bis(boryl) complexes indicate that the gallyl complex is not effective for the catalytic or stoichiometric gallylation of alkenes or alkynes. The phosphaalkyne, Bu(t)C[triple bond, length as m-dash]P, does, however, insert into one gallyl ligand of the complex, leading to the novel, crystallographically characterised P,N-gallyl complex, [Pt{Ga{[N(Ar)C(H)](2)}}{Ga{PC(Bu(t))C(H)[N(Ar)]C(H)N(Ar)}}(dppe)]. An investigation into the mechanism of this insertion reaction has been undertaken.  相似文献   

16.
Ruthenium nitrosyl complexes containing the Kl?ui's oxgyen tripodal ligand L(OEt)(-) ([CpCo{P(O)(OEt)(2)}(3)](-) where Cp = η(5)-C(5)H(5)) were synthesized and their photolysis studied. The treatment of [Ru(N^N)(NO)Cl(3)] with [AgL(OEt)] and Ag(OTf) afforded [L(OEt)Ru(N^N)(NO)][OTf](2) where N^N = 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy) (2·[OTf](2)), 2,2'-bipyridyl (bpy) (3·[OTf](2)), N,N,N'N'-tetramethylethylenediamine (4·[OTf](2)). Anion metathesis of 3·[OTf](2) with HPF(6) and HBF(4) gave 3·[PF(6)](2) and 3·[BF(4)](2), respectively. Similarly, the PF(6)(-) salt 4·[PF(6)](2) was prepared by the reaction of 4·[OTf](2) with HPF(6). The irradiation of [L(OEt)Ru(NO)Cl(2)] (1) with UV light in CH(2)Cl(2)-MeCN and tetrahydrofuran (thf)-H(2)O afforded [L(OEt)RuCl(2)(MeCN)] (5) and the chloro-bridged dimer [L(OEt)RuCl](2)(μ-Cl)(2) (6), respectively. The photolysis of complex [2][OTf](2) in MeCN gave [L(OEt)Ru(dtbpy)(MeCN)][OTf](2) (7). Refluxing complex 5 with RNH(2) in thf gave [L(OEt)RuCl(2)(NH(2)R)] (R = tBu (8), p-tol (9), Ph (10)). The oxidation of complex 6 with PhICl(2) gave [L(OEt)RuCl(3)] (11), whereas the reduction of complex 6 with Zn and NH(4)PF(6) in MeCN yielded [L(OEt)Ru(MeCN)(3)][PF(6)] (12). The reaction of 3·[BF(4)](2) with benzylamine afforded the μ-dinitrogen complex [{L(OEt)Ru(bpy)}(2)(μ-N(2))][BF(4)](2) (13) that was oxidized by [Cp(2)Fe]PF(6) to a mixed valence Ru(II,III) species. The formal potentials of the RuL(OEt) complexes have been determined by cyclic voltammetry. The structures of complexes 5,6,10,11 and 13 have been established by X-ray crystallography.  相似文献   

17.
The complex [[Ir(mu-Pz)(CNBu(t))(2)](2)] (1) undergoes double protonation reactions with HCl and with HO(2)CCF(3) to give the neutral dihydride complexes [[Ir(mu-Pz)(H)(X)(CNBu(t))(2)](2)] (X = Cl, eta(1)-O(2)CCF(3)), in which the hydride ligands were located trans to the X groups and in the boat of the complexes, both in the solid state and in solution. The complex [[Ir(mu-Pz)(H)(Cl)(CNBu(t))(2)](2)] evolves in solution to the cationic complex [[Ir(mu-Pz)(H)(CNBu(t))(2)](2)(mu-Cl)]Cl. Removal of the anionic chloride by reaction with methyltriflate allows the isolation of the triflate salt [[Ir(mu-Pz)(H)(CNBu(t))(2)](2)(mu-Cl)]OTf. This complex undergoes a metathesis reaction of hydride by chloride in CDCl(3) under exposure to the direct sunlight to give the complex [[Ir(mu-Pz)(Cl)(CNBu(t))(2)](2)(mu-Cl)]OTf. Protonation of both metal centers in [[Ir(mu-Pz)(CO)(2)](2)] with HCl occurs at low temperature, but eventually the mononuclear compound [IrCl(HPz)(CO)(2)] is isolated. The related complex [[Ir(mu-Pz)(CO)(P[OPh](3))](2)] reacts with HCl and with HO(2)CCF(3) to give the neutral Ir(III)/Ir(III) complexes [[Ir(mu-Pz)(H)(X)(CO)(P[OPh](3))](2)], respectively. Both reactions were found to take place stepwise, allowing the isolation of the intermediate monohydrides. They are of different natures, i.e., the metal-metal-bonded Ir(II)/Ir(II) compound [(P[OPh](3))(CO)(Cl)Ir(mu-Pz)(2)Ir(H)(CO)(P[OPh](3))] and the mixed-valence Ir(I)/Ir(III) complex [(P[OPh](3))(CO)Ir(mu-Pz)(2)Ir(H)(eta(1)-O(2)CCF(3))(CO)(P[OPh](3))].  相似文献   

18.
The self-assembly of complex cationic structures by combination of cis-blocked square planar palladium(II) or platinum(II) units with bis(pyridyl) ligands having bridging amide units has been investigated. The reactions have yielded dimers, molecular triangles, and polymers depending primarily on the geometry of the bis(pyridyl) ligand. In many cases, the molecular units are further organized in the solid state through hydrogen bonding between amide units or between amide units and anions. The molecular triangle [Pt(3)(bu(2)bipy)(3)(mu-1)(3)](6+), M = Pd or Pt, bu(2)bipy = 4,4'-di-tert-butyl-2,2'-bipyridine, and 1 = N-(4-pyridinyl)isonicotinamide, stacks to give dimers by intertriangle NH.OC hydrogen bonding. The binuclear ring complexes [[Pd(LL)(mu-2)](2)](CF(3)SO(3))(4), LL = dppm = Ph(2)PCH(2)PPh(2) or dppp = Ph(2)P(CH(2))(3)PPh(2) and 2 = NC(5)H(4)-3-CH(2)NHCOCONHCH(2)-3-C(5)H(4)N, form transannular hydrogen bonds between the bridging ligands. The complexes [[Pd(LL)(mu-3)](2)](CF(3)SO(3))(4), LL = dppm or dppp, L = PPh(3), and 3 = N,N'-bis(pyridin-3-yl)-pyridine-2,6-dicarboxamide, and [[Pd(LL)(mu-4)](2)](CF(3)SO(3))(4), LL = dppm, dppp, or bu(2)bipy, L = PPh(3), and 4 = N,N'-bis(pyridin-4-yl)-pyridine-2,6-dicarboxamide, are suggested to exist as U-shaped or square dimers, respectively. The ligands N,N'-bis(pyridin-3-yl)isophthalamide, 5, or N,N'-bis(pyridin-4-yl)isophthalamide, 6, give the complexes [[Pd(LL)(mu-5)](2)](CF(3)SO(3))(4) or [[Pd(LL)(mu-6)](2)](CF(3)SO(3))(4), but when LL = dppm or dppp, the zigzag polymers [[Pd(LL)(mu-6)](x)](CF(3)SO(3))(2)(x) are formed. When LL = dppp, a structure determination shows formation of a laminated sheet structure by hydrogen bonding between amide NH groups and triflate anions of the type NH-OSO-HN.  相似文献   

19.
The ligands KS(2)CN(Bz)CH(2)CH(2)N(Bz)CS(2)K (K(2)L(1)), N(CH(2)CH(2)N(Me)CS(2)Na)(3) (Na(3)L(2)), and the new chelates {(CH(2)CH(2))NCS(2)Na}(3) (Na(3)L(3)) and {CH(2)CH(2)N(CS(2)Na)CH(2)CH(2)CH(2)NCS(2)Na}(2) (Na(4)L(4)), react with the gold(I) complexes [ClAu(PR(3))] (R = Me, Ph, Cy) and [ClAu(IDip)] to yield di-, tri-and tetragold compounds. Larger metal units can also be coordinated by the longer, flexible linker, K(2)L(1). Thus two equivalents of cis-[PtCl(2)(PEt(3))(2)] react with K(2)L(1) in the presence of NH(4)PF(6) to yield the bimetallic complex [L(1){Pt(PEt(3))(2)}(2)](PF(6))(2). The compounds [NiCl(2)(dppp)] and [MCl(2)(dppf)] (M = Ni, Pd, Pt; dppp = 1,3-bis(diphenylphosphino)propane, dppf = 1,1'-bis(diphenylphosphino)ferrocene) also yield the dications, [L(1){Ni(dppp)}(2)](2+) and [L(1){Ni(dppf)}(2)](2+) in an analogous fashion. In the same manner, reaction between [(L'(2))(AuCl)(2)] (L'(2) = dppm, dppf; dppm = bis(diphenylphosphino)methane) and KS(2)CN(Bz)CH(2)CH(2)N(Bz)CS(2)K yield [L(1){Au(2)(L'(2))}(2)]. The molecular structures of [L(1){M(dppf)}(2)](PF(6))(2) (M = Ni, Pd) and [L(1){Au(PR(3))}(2)] (R = Me, Ph) are reported.  相似文献   

20.
Treatment of the bridging bidentate 1,Z-bis(aminopropyl)-1,Z-dicarba-closo-dodecaborane(12)(1,Z-bis(aminopropyl)-1,Z-carborane) ligands of the type 1,Z-[H(2)N(CH(2))(3)](2)-1,Z-C(2)B(10)H(10)(L(1), Z= 7, 5) or (L(2), Z= 12, 6) with two equivalents of trans-[PtClI(2)(NH(3))](-), followed by halogen ligand metathesis with AgOTf and HCl((aq)) afforded the novel diplatinum(II)-amine species cis-[[PtCl(2)(NH(3))](2)L(n)](7(n= 1) or 8(n= 2), respectively). Similarly, the reaction of L(1) or L(2) with the labile trans-[PtCl(dmf)(NH(3))(2)](+) afforded trans-[[PtCl(NH(3))(2)](2)L(n)](OTf)(2)(9(n= 1) or 10(n= 2), respectively) in good yield and purity. However, isolation of the analogous 1,2-carborane complexes was not possible owing to decomposition reactions that led to extensive degradation of the carborane cage and reduction of the metal centre. The mixed dinuclear complex [cis-[PtCl(2)(NH(3))]-L(1)-trans-[PtCl(NH(3))(2)]]OTf (19) was prepared by treatment of the Boc-protected amine ligand 1-[(Boc)(2)N(CH(2))(3)]-7-[H(2)N(CH(2))(3)]-1,7-C(2)B(10)H(10)(L(3), 15) with trans-[PtCl(dmf)(NH(3))(2)](+) to yield trans-[PtCl(NH(3))(2)L(3)]OTf (16), followed by acid deprotection of the pendant amine group, complexation with trans-[PtClI(2)(NH(3))](-), and halogen ligand metathesis using AgOTf and HCl((aq)). A novel trinuclear species containing 5 was prepared by the addition of two equivalents of 15 to the labile precursor cis-[Pt(dmf)(2)(NH(3))(2)](2+) followed by acid deprotection of the pendant amine groups. Further complexation with two equivalents of trans-[PtClI(2)(NH(3))](-) followed by halogen ligand metathesis using AgOTf and HCl((aq)) afforded the triplatinum(II)-amine species [cis-[Pt(NH(3))(2)(L(1))(2)]-cis-[PtCl(2)(NH(3))](2)](OTf)(2)(23). Complexes 7-10, 19 and 23 represent the first examples of multinuclear platinum(ii)-amine derivatives containing carborane cages. Preliminary in vitro cytotoxicity studies for selected complexes are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号