首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HNCO is a convenient photolytic source of NCO and NH radicals for laboratory kinetics studies of elementary reaction[1] and plays an important role in the combustion and atmosphere chemistry. It can re- move deleterious compounds rapidly from exhausted ga…  相似文献   

2.
Stoichiometric relations of initial compounds and reaction products in the synthesis of N,N-dialkyl-(diphenylphosphinomethylene)iminium are established; the second reaction product is diphenylphosphinic iodide. Bringing triphenylphosphine into the reaction increases the N,N-dialkyl(diphenylphosphinomethylene)-iminium yield approximately twice. One of the reaction intermediates is shown to be iododiphenylphosphine. The reaction can be regarded as disproportionation.  相似文献   

3.
The effect of copper (II) and chloride ions on the manganese (II) catalyzed iodate-peroxide reaction has been examined with reference to the hydrogen peroxide-iodic acid-manganese (II)-organic species oscillatory reaction. The observations are considered to provide evidence for iodine dioxide as the key intermediate in the manganese (II) catalyzed reaction. Kinetic data for the copper (II) catalyzed reaction are reported.  相似文献   

4.
三芳胺化合物的合成方法主要有3种:(1)非金属催化的胺化反应;(2)铜催化的Ullnann反应,包括使用过量铜粉为催化剂的传统的Ullmann反应、使用相转移催化剂的Ullmann反应以及使用配体的post-Ullmann反应;(3)钯催化的Buchwald-Hartwig反应.该类反应活性的关键是配体的选择,根据配体结构的不同可分为双膦螯合型配体、单膦配体和非膦配体.对该类化合物的这几种合成方法的研究进展进行了总结.  相似文献   

5.
The effect of a single water molecule on the OH + HOCl reaction has been investigated. The naked reaction, the reaction without water, has two elementary reaction paths, depending on how the hydroxyl radical approaches the HOCl molecule. In both cases, the reaction begins with the formation of prereactive hydrogen bond complexes before the abstraction of the hydrogen by the hydroxyl radical. When water is added, the products of the reaction do not change, and the reaction becomes quite complex yielding six different reaction paths. Interestingly, a geometrical rearrangement occurs in the prereactive hydrogen bonded region, which prepares the HOCl moiety to react with the hydroxyl radical. The rate constant for the reaction without water is computed to be 2.2 × 10(-13) cm(3) molecule(-1) s(-1) at room temperature, which is in good agreement with experimental values. The reaction between ClOH···H(2)O and OH is estimated to be slower than the naked reaction by 4-5 orders of magnitude. Although, the reaction between ClOH and the H(2)O···HO complex is also predicted to be slower, it is up to 2.2 times faster than the naked reaction at altitudes below 6 km. Another intriguing finding of this work is an interesting three-body interchange reaction that can occur, that is HOCl + HO···H(2)O → HOCl···H(2)O + OH.  相似文献   

6.
 The food dye tartrazine is oxidized with peroxydisulfate in the absence and in the presence of Ag(I) and Fe(III) catalysts. In the absence of these metal ions, the reaction shows second-order kinetics, first-order in each of the reacting species. With the Ag(I) ion in the medium the reaction proceeds considerably faster, but still follows second-order kinetics. The reaction rate depends on the concentration of Ag(I) and S2O8 2−, but is independent of the concentration of the substrate. When Fe(III) acts as the catalyst, a marked enhancement in the reaction rate is observed, and the reaction proceeds through two parallel pathways, the catalyzed and the noncatalyzed. The catalyzed path follows third order kinetics, being first-order in substrate, oxidant, and catalyst concentration. Mechanisms of the noncatalyzed as well as the Ag(I) and Fe(III) catalyzed reaction systems are proposed.  相似文献   

7.
居冠之  陈德展 《化学学报》1990,48(8):731-736
我们利用超球坐标对共线Cl+HCl(V-3)→ClH(V'≤3)+Cl作了一维精确量子计算,计算所用势能面是LEPS型,Et=-3.23KJ/mol, 得到了态态反应几率等动力学信息, 通过分析结果发现, 反应是振动绝热的, 即以对角(V'-V')反应几率为主,非对角(V' V')反应几率小于0.1, 反应几率随总能量表现出强裂地振荡, 在有阱的势能面上动力学共振增强。  相似文献   

8.
The kinetics of the reaction of several alcohols (benzyl alcohol, ethanol, 1-phenylethanol, cyclohexanol, and 1-methyl-1-phenylethanol) with a selection of anhydrides (acetic anyhydride, propionic anhydride, isobutyric anhydride, isovaleric anhydride, and pivalic anhydride) as catalyzed by 4-(N,N-dimethylamino)pyridine (DMAP)/triethyl amine have been studied in CH(2)Cl(2) at 20 degrees C. In all cases the reaction kinetics can be described by rate laws containing a DMAP-catalyzed term and an uncatalyzed (background) term. The rate constants for the background reaction respond sensitively to changes in the steric demand of the alcohol and the anhydride substrates, making the reaction of cyclohexanol with acetic anhydride 526 times faster than the reaction with pivalic anhydride. Steric effects are even larger for the catalyzed reaction and the reactivity difference between acetic and pivalic anhydride exceeds a factor of 8000 for the reaction of cyclohexanol. There is, however, no linear correlation between the steric effects on the catalyzed and the uncatalyzed part. As a consequence there are substrate combinations with dominating catalytic terms (such as the reaction of benzyl alcohol with isobutyric anhydride), while other substrate combinations (such as the reaction of cyclohexanol with pivalic anhydride) are characterized through a dominating background process. The implications of these findings for the kinetic resolution of alcohols are discussed.  相似文献   

9.
The kinetics of the O + ICN reaction was studied using a relative rate method, with O + C(2)H(2) as the competing reaction. Carbon monoxide products formed in the competing reaction and subsequent secondary chemistry were detected as a function of reagent ICN pressure to obtain total rate constants for the O + ICN reaction. Analysis of the experimental data yields rate constants of k(1) = (3.7 ± 1.0 to 26.2 ± 4.0) × 10(-14) cm(3) molecule(-1) s(-1) over the total pressure range 1.5-9.5 Torr. Product channel NCO + I, the only bimolecular exothermic channel of the reaction, was investigated by detection of N(2)O in the presence of NO and found to be insignificant. An ab initio calculation of the potential energy surface (PES) of the reaction at the CCSD(T)/CEP-31G//DFT-B3LYP/CEP-31G level of theory was also performed. The pathways leading to bimolecular product channels are kinetically unfavorable. Formation and subsequent stabilization of an ICNO adduct species appears to dominate the reaction, in agreement with the experimentally observed pressure dependent rate constants.  相似文献   

10.
A study of the reaction of cis-[PdRf2(AsPh3)2] (Rf = 3,5-C6Cl2F3) with ISnBu3 (that is the reversal of the natural Stille reaction of [PdRfI(AsPh3)2] with RfSnBu3) allows for the observation of cis-[PdRf2(AsPh3)(ISnBu3)], the expected intermediate from a cyclic transmetalation in the direct Stille reaction, thus providing experimental support to the operation of cyclic transmetalation pathways.  相似文献   

11.
Lu BZ  Senanayake C  Li N  Han Z  Bakale RP  Wald SA 《Organic letters》2005,7(13):2599-2602
[reaction: see text] An efficient method has been developed to prepare all four isomers of the hydroxyl derivatives of sibutramine by addition of Grignard reagents (R)- or (S)-5 to a single enantiomer of sulfinyl imine (R)-1 simply by tuning the reaction solvent. The phenomenon of the reversed diastereoselectivity in CH(2)Cl(2) and THF implied that the reaction may proceed through a chelated cyclic transition state in CH(2)Cl(2) and nonchelated acyclic transition state in THF.  相似文献   

12.
In the present mechanistic schemes of the ferroin-catalyzed oscillatory Belousov-Zhabotinsky (BZ) reaction the oxidation of the organic substrates (bromomalonic or malonic acid) by ferriin (the oxidized form of the catalyst) plays an important role. As the organic products of these reactions were not yet identified experimentally, they were studied here by an HPLC technique. It was found that the main organic oxidation product of bromomalonic acid is bromo-ethene-tricarboxylic acid (BrEETRA), the same compound that is formed when bromomalonic acid is oxidized by Ce4+ (another catalyst of the BZ reaction). Formation of BrEETRA is explained here by a new mechanism that is more realistic than the one suggested earlier. To find any oxidation product of malonic acid in the ferriin-malonic acid reaction was not successful, however. Neither ethane-tetracarboxylic acid (ETA) nor malonyl malonate (MAMA), the usual products of the Ce4+- malonic acid reaction, nor any other organic acid, not even CO2, was found as a product of the reaction. We propose that malonic acid is not oxidized in the ferriin-malonic acid reaction, and it plays only the role of a complex forming catalyst in a process where Fe3+ oxidizes mostly its phenantroline ligand.  相似文献   

13.
尼古丁对乳酸脱氢酶活性的影响   总被引:2,自引:0,他引:2  
用计时电流法成功地研究了尼古丁对乳酸脱氢酶活性的影响,测定了尼古丁存在与否对乳酸脱氢酶酶促反应的初速度V0、酶促反应最大反应初速度Vm及米氏常数Km。实验结果表明尼古丁对乳酸脱氢酶的活性有很大影响,但在高浓度的NADH存在下,尼古丁对乳酸脱氢酶活性的影响将得到大大降低。  相似文献   

14.
15.
We analyzed the mechanisms of the water-gas-shift reaction catalyzed by Fe(CO) 5/OH (-) in the gas phase using DFT methods. The systematic analysis of the accessible reaction mechanisms and the consideration of the Gibbs free energies allows for different reaction routes than previously suggested. In the dominant catalytic cycle, the hydride [FeH(CO) 4]- is the important intermediate. Associative reaction mechanisms are not favorable under moderate and low pressures. At high pressure, a side reaction takes over and prevents the conversion of H 2O and CO to H 2 and CO 2 and leads to the formation of HCOOH.  相似文献   

16.
Cai J  Zhou Z  Zhao G  Tang C 《Organic letters》2002,4(26):4723-4725
[reaction: see text] In homogeneous H(2)O/solvent medium, the reaction rate of aromatic aldehydes and acrylonitrile or acrylate was greatly accelerated, which led to shorter reaction time, lower reaction temperature, and higher yield. In this reaction, Me(3)N, DMAP, DABCO, and urotropine were good catalysts. Except for low-carbon alcohols, tetrahydrofuran, 1,4-dioxane, and acetonitrile could be chosen as the solvent. Under this condition, the diastereoselective reaction of nitrobenzaldehyde and L-menthyl acrylate was realized with 88-99% de.  相似文献   

17.
武卫荣 《化学通报》2014,77(8):825-825
利用量子化学从头算和密度泛函理论(DFT)对SiN和ClO反应机理进行了理论研究.在B3LYP/6-311 G(d,p)水平上优化得到了反应势能面上各驻点的几何构型;通过频率分析和内禀反应坐标(IRC)计算对过渡态与反应物和产物的连接关系进行确认.在CCSD(T)/cc-pVTZ水平上对各物种的能量进行校正,得到了反应势能面.计算结果表明:该反应体系存在单态和三态势能面,其中单态势能面上反应通道(1)和(2)是主反应通道,P4为主产物.  相似文献   

18.
以金刚烷胺和甲酸、甲醛为原料,经过埃斯韦勒一克拉克甲基化反应合成了N,N-二甲基金刚烷叔胺.随后采用N,N-二甲基金刚烷叔胺与氯乙酸钠通过季铵化反应合成N-(1-金刚烷基)-N,N-二甲基甜菜碱两性离子表面活性剂,并通过探讨溶剂-选择、反应温度、反应时间、反应体系pH值、反应物配比对反应产率的影响,得出金刚烷基甜菜碱的...  相似文献   

19.
Summary.  The food dye tartrazine is oxidized with peroxydisulfate in the absence and in the presence of Ag(I) and Fe(III) catalysts. In the absence of these metal ions, the reaction shows second-order kinetics, first-order in each of the reacting species. With the Ag(I) ion in the medium the reaction proceeds considerably faster, but still follows second-order kinetics. The reaction rate depends on the concentration of Ag(I) and S2O8 2−, but is independent of the concentration of the substrate. When Fe(III) acts as the catalyst, a marked enhancement in the reaction rate is observed, and the reaction proceeds through two parallel pathways, the catalyzed and the noncatalyzed. The catalyzed path follows third order kinetics, being first-order in substrate, oxidant, and catalyst concentration. Mechanisms of the noncatalyzed as well as the Ag(I) and Fe(III) catalyzed reaction systems are proposed. Received June 28, 1999. Accepted (revised) September 27, 1999  相似文献   

20.
The reaction of CH(3)C(O)O(2) with HO(2) has been investigated at 296 K and 700 Torr using long path FTIR spectroscopy, during photolysis of Cl(2)/CH(3)CHO/CH(3)OH/air mixtures. The branching ratio for the reaction channel forming CH(3)C(O)O, OH and O(2) (reaction ) has been determined from experiments in which OH radicals were scavenged by addition of benzene to the system, with subsequent formation of phenol used as the primary diagnostic for OH radical formation. The dependence of the phenol yield on benzene concentration was found to be consistent with its formation from the OH-initiated oxidation of benzene, thereby confirming the presence of OH radicals in the system. The dependence of the phenol yield on the initial peroxy radical precursor reagent concentration ratio, [CH(3)OH](0)/[CH(3)CHO](0), is consistent with OH formation resulting mainly from the reaction of CH(3)C(O)O(2) with HO(2) in the early stages of the experiments, such that the limiting yield of phenol at high benzene concentrations is well-correlated with that of CH(3)C(O)OOH, a well-established product of the CH(3)C(O)O(2) + HO(2) reaction (via channel (3a)). However, a delayed source of phenol was also identified, which is attributed mainly to an analogous OH-forming channel of the reaction of HO(2) with HOCH(2)O(2) (reaction ), formed from the reaction of HO(2) with product HCHO. This was investigated in additional series of experiments in which Cl(2)/CH(3)OH/benzene/air and Cl(2)/HCHO/benzene/air mixtures were photolysed. The various reaction systems were fully characterised by simulations using a detailed chemical mechanism. This allowed the following branching ratios to be determined: CH(3)C(O)O(2) + HO(2)--> CH(3)C(O)OOH + O(2), k(3a)/k(3) = 0.38 +/- 0.13; --> CH(3)C(O)OH + O(3), k(3b)/k(3) = 0.12 +/- 0.04; --> CH(3)C(O)O + OH + O(2), k(3c)/k(3) = 0.43 +/- 0.10: HOCH(2)O(2) + HO(2)--> HCOOH + H(2)O + O(2), k(17b)/k(17) = 0.30 +/- 0.06; --> HOCH(2)O + OH + O(2), k(17c)/k(17) = 0.20 +/- 0.05. The results therefore provide strong evidence for significant participation of the radical-forming channels of these reactions, with the branching ratio for the title reaction being in good agreement with the value reported in one previous study. As part of this work, the kinetics of the reaction of Cl atoms with phenol (reaction (14)) have also been investigated. The rate coefficient was determined relative to the rate coefficient for the reaction of Cl with CH(3)OH, during the photolysis of mixtures of Cl(2), phenol and CH(3)OH, in either N(2) or air at 296 K and 760 Torr. A value of k(14) = (1.92 +/- 0.17) x 10(-10) cm(3) molecule(-1) s(-1) was determined from the experiments in N(2), in agreement with the literature. In air, the apparent rate coefficient was about a factor of two lower, which is interpreted in terms of regeneration of phenol from the product phenoxy radical, C(6)H(5)O, possibly via its reaction with HO(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号