首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we study a completely integrable dissipative equation. The Burgers equation is extended by using the sense of the Kadomtsev–Petviashvili (KP) equation. The new established Burgers–KP equation is studied by using the tanh–coth method to obtain kink solutions and periodic solutions. We also apply the powerful Hirota’s bilinear method to establish exact N-soliton solutions for the derived integrable equation.  相似文献   

2.
Some classes of the rational, periodic and solitary wave solutions for the Burgers hierarchy are presented. The solutions for this hierarchy are obtained by using the generalized Cole–Hopf transformation.  相似文献   

3.
In this paper, we implemented the exp-function method for the exact solutions of the fifth order KdV equation and modified Burgers equation. By using this scheme, we found some exact solutions of the above-mentioned equations.  相似文献   

4.
In this paper we study the generalized Burgers equation ut+(u2/2)x=f(t)uxx, where f(t)>0 for t>0. We show the existence and uniqueness of classical solutions to the initial value problem of the generalized Burgers equation with rough initial data belonging to , as well it is obtained the decay rates of u in Lp norm are algebra order for p∈[1,∞[.  相似文献   

5.
In this paper, by introducing the fractional derivative in the sense of Caputo, the generalized two-dimensional differential transform method (DTM) is directly applied to solve the coupled Burgers equations with space- and time-fractional derivatives. The presented method is a numerical method based on the generalized Taylor series formula which constructs an analytical solution in the form of a polynomial. Several illustrative examples are given to demonstrate the effectiveness of the generalized two-dimensional DTM for the equations.  相似文献   

6.
We construct a finite difference scheme for the ordinary differential equation describing the traveling wave solutions to the Burgers equation. This difference equation has the property that its solution can be calculated. Our procedure for determining this solution follows closely the analysis used to obtain the traveling wave solutions to the original ordinary differential equation. The finite difference scheme follows directly from application of the nonstandard rules proposed by Mickens. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 815–820, 1998  相似文献   

7.
In this work we derive a new completely integrable dispersive equation. The equation is obtained by combining the Sawada–Kotera (SK) equation with the sense of the Kadomtsev–Petviashvili (KP) equation. The newly derived Sawada–Kotera–Kadomtsev–Petviashvili (SK–KP) equation is studied by using the tanh–coth method, to obtain single-soliton solution, and by the Hirota bilinear method, to determine the N-soliton solutions. The study highlights the significant features of the employed methods and its capability of handling completely integrable equations.  相似文献   

8.
In this paper we give exact solutions for a forced Burgers equation. We make use of the generalized Cole-Hopf transformation and the traveling wave method.  相似文献   

9.
We consider the stationary O’Connell–Yor model of semi-discrete directed polymers in a Brownian environment in the intermediate disorder regime and show convergence of the increments of the log-partition function to the energy solutions of the stochastic Burgers equation.The proof does not rely on the Cole–Hopf transform and avoids the use of spectral gap estimates for the discrete model. The key technical argument is a second-order Boltzmann–Gibbs principle.  相似文献   

10.
Soliton solutions of Burgers equations and perturbed Burgers equation   总被引:1,自引:0,他引:1  
This paper carries out the integration of Burgers equation by the aid of tanh method. This leads to the complex solutions for the Burgers equation, KdV-Burgers equation, coupled Burgers equation and the generalized time-delayed Burgers equation. Finally, the perturbed Burgers equation in (1+1) dimensions is integrated by the ansatz method.  相似文献   

11.
12.
为研究耦合Burgers方程的可积性,利用WTC测试方法,给出了第一类Burgers方程的Painleve性质和第二类Burgers方程的条件Painleve性质.进而得到了第一类方程的变量分离解和第二类方程的(N2+3N+6/2)-参数Lie点对称群.  相似文献   

13.
用微分形式的吴方法讨论了广义KdV—Burgers方程不同系数情况下的势对称,并且利用这些对称求得了相应的不变解,这些解对进一步研究广义KdV—Burgers方程所描述的物理现象具有重要意义.  相似文献   

14.
In this paper, we show the existence of the strong solutions for the coupled suspension bridge equations. Furthermore, existence of the strong global attractors is investigated using a new semigroup scheme. Since the solutions of the coupled equation have no higher regularity and the semigroup associated with the solutions is not continuous in the strong Hilbert space, the results are new and appear to be optimal.  相似文献   

15.
M-component Burgers equations in (1+1)-dimensions and (2+1)-dimensions are examined for complete integrability. The Cole-Hopf transformation method and the simplified form of Hereman’s method are used to achieve this goal. Multiple kink solutions and multiple singular kink solutions are formally derived for each vector equation.  相似文献   

16.
The propagation of travelling waves is a relevant physical phenomenon. As usual the understanding of a real propagating wave depends upon a correct formulation of a idealized model. Discontinuous functions, Dirac-δ measures and their distributional derivatives are, respectively, idealizations of sharp jumps, localized high peaks and single sharp localised oscillations. In the present paper we study the propagation of distributional travelling waves for Burgers inviscid equation. This will be afforded by our theory of distributional products, and is based on a rigorous and consistent concept of solution we have introduced in [C.O.R. Sarrico, Distributional products and global solutions for nonconservative inviscid Burgers equation, J. Math. Anal. Appl. 281 (2003) 641-656]. Our approach exhibit Dirac-δ travelling solitons (they are just the “infinitesimal narrow solitons” of Maslov, Omel'yanov and Tsupin [V.P. Maslov, O.A. Omel'yanov, Asymptotic soliton-form solutions of equations with small dispersion, Russian Math. Surveys 36 (1981) 73-149; V.P. Maslov, V.A. Tsupin, Necessary conditions for the existence of infinitely narrow solitons in gas dynamics, Soviet Phys. Dokl. 24 (1979) 354-356]) and also solutions which are not measures such as for instance u(x,t)=b+δ(xbt), a wave of constant speed b. Moreover, for signals with two jump discontinuities we have, in our setting, the propagation of more solitons and more values for the signal speed are allowed than those afforded within classical framework.  相似文献   

17.
We consider the (1+3)-dimensional Burgers equation ut = uxx + uyy + uzz + uux which has considerable interest in mathematical physics. Lie symmetries are used to reduce it to certain ordinary differential equations. We employ numerical methods to solve a number of these ordinary differential equations.  相似文献   

18.
The current paper proposes a technique for the numerical solution of Burgers equations. The method is based on finite difference formula combined with the Galerkin method, which uses the interpolating scaling functions. Several test problems are given, and the numerical results are reported to show the accuracy and efficiency of the new algorithm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
We are interested in the classical solutions to the Cauchy problem of relativistic Burgers equations evolving in Friedmann-Lemat?tre-Robertson-Walker(FLRW)space-times,which are spatially homogeneous,isotropic expanding or contracting universes.In such kind of space-times,we first derive the relativistic Burgers equations from the relativistic Euler equations by letting the pressure be zero.Then we can show the global existence of the classical solution to the derived equation in the accelerated expanding space-times with small initial data by the method of characteristics when the spacial dimension n=1 and the energy estimate when n 2,respectively.Furthermore,we can also show the lifespan of the classical solution by similar methods when the expansion rate of the space-times is not so fast.  相似文献   

20.
We show that the solutions of the initial value problems for a large class of Burgers type equations approach with time to the sum of appropriately shifted wave-trains and of diffusion waves.

Résumé

Nous montrons que les solutions du problème de Cauchy pour une grande classe d'équations de type de Burgers sont approchées en temps grand vers des sommes d'ondes de diffusion et d'ondes progressives adéquatement translatées.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号