首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we develop an approach to design a three-phase, gas–solid–liquid flow system that transports pneumatically scarified solid particles, including sticky ones, through a vertical pipe. The proposed system permits the introduction and maintenance of a liquid film that coats the pipe’s inner wall and acts as a lubricant that ensures sticky particles continue to move upward without permanently adhering to the pipe wall. The system’s operating conditions fall within the boundaries of the annular dispersed region on a typical flow pattern map of vertical flow of a gas–liquid mixture. High gas superficial velocities combined with low liquid superficial velocities characterize such a region. A combination of a modified one-dimensional, two-fluid annular dispersed flow model and a one-dimensional pneumatic conveying model is shown to describe this transport process satisfactorily. Solution of the combined models produces all the necessary design parameters including power requirements and superficial velocities of the two-fluid media needed to transport a given amount of solid particles. Results of model calculations are compared with rare three-phase flow data obtained prior to the development of the present model, by an independent experimental team that used the physical conditions of the present approach. Reasonable agreement justifies the use of the combined model for engineering design purposes.  相似文献   

2.
Turbulence modulation due to its interaction with dispersed solid particles in a downward fully developed channel flow was studied. The Eulerian framework was used for the gas-phase, whereas the Lagrangian approach was used for the particle-phase. The steady-state equations of conservation of mass and momentum were used for the gas-phase, and the effect of turbulence on the flow-field was included via the standard kε model. The particle equation of motion included the drag, the Saffman lift and the gravity forces. Turbulence dispersion effect on the particles was simulated as a continuous Gaussian random field. The effects of particles on the flow were modeled by appropriate source terms in the momentum, k and ε equations. Particle–particle collisions and particle–wall collisions were accounted for in these simulations. Gas-phase velocities and turbulence kinetic energy in the presence of 2–100% mass loadings of two particle classes (50 μm glass and 70 μm copper) were evaluated, and the results were compared with the available experimental data and earlier numerical results. The simulation results showed that when the inter-particle collisions were important and was included in the computational model, the fluid turbulence was attenuated. The level of turbulence attenuation increased with particle mass loading, particle Stokes number, and the distance from the wall. When the inter-particle collisions were negligible and/or was neglected in the model, the fluid turbulence was augmented for the range of particle sizes considered.  相似文献   

3.
In order to investigate the fluctuation characteristics of two-phase flow splitting at a T-junction, particular attention was paid on Churn flow which had the strongest fluctuation comparing with bubble flow and annular flow. The main tube of the T-junction was vertical and the two branches were horizontal. All three pipes connecting to the junction were of 15 mm inner diameter. A statistical analysis based on Root Mean Square (RMS) was applied to temporal differential pressure signals and gas flow rate signals. The Power Spectral Density (PSD) was also employed to reveal their peculiar features in frequency domain as well. The effects of the extraction flow ratio and the gas and liquid superficial velocity upstream on fluctuation characteristics of gas-liquid two-phase flow splitting at the T-junction were investigated in detail. It is found that there is a wide fluctuation in both differential pressure and gas flow rate downstream at every extraction ratio (W3/W1) and the fluctuation intensity increases as W3/W1 increasing. It is also made clear that increasing either water superficial velocity or gas superficial velocity in inlet causes fluctuation to become more intensive.  相似文献   

4.
Drag reduction (DR) for air and water flowing in an inclined 0.0127 m diameter pipe was investigated experimentally. The fluids had an annular configuration and the pipe is inclined upward. The injection of drag reducing polymer (DRP) solution produced drag reductions as high as 71% with concentration of 100 ppm in the pipeline. A maximum drag reduction that is accompanied (in most cases) by a change to a stratified or annular-stratified pattern. The drag reduction is sensitive to the gas and liquid superficial velocities and the pipe inclination. Maximum drag reduction was achieved in the case of pipe inclination of 1.28° at the lowest superficial gas velocity and the highest superficial liquid velocity. For the first time in literature, the drag reduction variations with the square root of the superficial velocities ration for flows with the same final flow patterns have self-similar behaviors.  相似文献   

5.
In many annular two-phase gas–liquid flows, large disturbance waves propagate liquid mass. These waves are important for modeling of gas-to-liquid momentum transfer and liquid film behavior. High-speed videos of vertical upflow have been analyzed to extract individual and average wave data. Two types of structures, coherent waves and piece waves, have been identified in these flows. Velocities, lengths, and temporal spacings of individual waves and average velocities, lengths, frequencies, and intermittencies have been studied as functions of both gas and liquid flow rates. Velocity and frequency increase with liquid and gas flow rates, length decreases with increasing gas flow and increases with increasing liquid flow, and intermittency is predominantly an increasing function of liquid flow.  相似文献   

6.
Two-phase air–water flow and heat transfer in a 25 mm internal diameter horizontal pipe were investigated experimentally. The water superficial velocity varied from 24.2 m/s to 41.5 m/s and the air superficial velocity varied from 0.02 m/s to 0.09 m/s. The aim of the study was to determine the heat transfer coefficient and its connection to flow pattern and liquid film thickness. The flow patterns were visualized using a high speed video camera, and the film thickness was measured by the conductive tomography technique. The heat transfer coefficient was calculated from the temperature measurements using the infrared thermography method. It was found that the heat transfer coefficient at the bottom of the pipe is up to three times higher than that at the top, and becomes more uniform around the pipe for higher air flow-rates. Correlations on local and average Nusselt number were obtained and compared to results reported in the literature. The behavior of local heat transfer coefficient was analyzed and the role of film thickness and flow pattern was clarified.  相似文献   

7.
We develop improved correlations for two-phase flow friction factor that consider the effect of the relative velocity of the phases, based on a database that includes 2560 gas–liquid flow experiments in horizontal pipes. The database includes a wide range of operational conditions and fluid properties for two-phase friction factor correlations. We classify the experiments by liquid holdup ranges to obtain composite analytical expressions for two-phase friction factor vs. the Reynolds number by fitting logistic dose curves to the experimental data with. We compute the liquid holdup values used to classify the experimental data using correlations proposed previously. The Reynolds number is based on the mixture velocity and the liquid kinematic viscosity. The Fanning friction factor for gas–liquid is defined in term of the mixture velocity and density. Additionally, we sort the experimental data by flow regime and obtain the two-phase friction factor improved correlations for dispersed bubble, slug, stratified and annular flow for different holdup ranges. We report error estimates for the predicted vs. measured friction factor together with standard deviation for each correlation. The accuracy of the correlations developed in this study is compared with that of other 21 correlations and models widely available in the specialized literature. Since different authors use different definitions for friction factors and Reynolds numbers, we present comparisons of the predicted pressure drop for each and every data point in the database. In most cases our correlations predict the pressure drop with much greater accuracy than those presented by previous authors.  相似文献   

8.
The comparison of two theoretical approaches for the numerical investigation of turbulent gas–solid flows with heat transfer in a pipe are presented in this paper. The first approach is based on Eulerian–Eulerian modelling of investigated phenomena, the second one is formulated within the framework of the Eulerian–Lagrangian approach. The verification of numerical models under consideration. Their testing against available experimental data show good prognostic properties of the elaborated theoretical tool for research activities to study new physical fundamentals of turbulent gas-suspended particles flows in pipes and channels.  相似文献   

9.
Bubbles and slugs rising in vertical pipes of good and poor wettability were observed with a high-speed video camera in normal gravity as well as in microgravity. The wettability of the pipe did not affect the mean rising velocity of bubbles in microgravity. The same was true for the mean rising velocity of slugs in microgravity. An empirical relation was derived for the mean rising velocity of bubbles and slugs in mirogravity as a function of the superficial velocities of gas and liquid.  相似文献   

10.
Measurements of the cross-sectional distribution of the gas fraction and bubble size distributions were conducted in a vertical pipe with an inner diameter of 51.2 mm and a length of about 3 m for air/water bubbly and slug flow regimes. The use of a wire-mesh sensor obtained a high resolution of the gas fraction data in space as well as in time. From this data, time averaged values for the two-dimensional gas fraction profiles were decomposed into a large number of bubble size classes. This allowed the extraction of the radial gas fraction profiles for a given range of bubble sizes as well as data for local bubble size distributions. The structure of the flow can be characterized by such data. The measurements were performed for up to 10 different inlet lengths and for about 100 combinations of gas and liquid volume flow rates. The data is very useful for the development and validation of meso-scale models to account for the forces acting on a bubble in a shear liquid flow and models for bubble coalescence and break-up. Such models are necessary for the validation of CFD codes for the simulation of bubbly flows.  相似文献   

11.
Experimental studies on the turbulence modification in annular two-phase flow passing through a throat section were carried out. The turbulence modification in multi-phase flow due to the interactions between two-phases is one of the most interesting scientific issues and has attracted research attention. In this study, the gas-phase turbulence modification in annular flow due to the gas–liquid phase interaction is experimentally investigated. The annular flow passing through a throat section is under the transient state due to the changing cross sectional area of the channel and resultantly the superficial velocities of both phases are changed compared with a fully developed flow in a straight pipe. The measurements for the gas-phase turbulence were precisely performed by using a constant temperature hot-wire anemometer, and made clear the turbulence structure such as velocity profiles, fluctuation velocity profiles. The behavior of the interfacial waves in the liquid film flow such as the ripple or disturbance waves was also observed. The measurements for the liquid film thickness by the electrode needle method were also performed to measure the base film thickness, mean film thickness, maximum film thickness and wave height of the ripple or the disturbance waves.  相似文献   

12.
Based on previous work, a new temperature measuring system for gas–liquid flow, composed of shielded and unshielded thermocouples, on-line laser detection device for liquid droplets, vacuum pump and wavelet analysis data processor, is developed in this work. The necessity of vacuum pump and the criterion of mesh size selection are also described. Through an application of measuring temperature in saturator, it shows that the system can evaluate the separation of gas–liquid two-phase flow and measure the liquid droplet temperature and the gas temperature effectively in counter-current spraying field.  相似文献   

13.
With a concise review on some basic and novel algorithms and methods for the techniques of particle-imaging velocimetry (PIV), the paper reports an application of the PIV techniques to the investigation of particle motion in a gas–solid two-phase spiral flow in a horizontal tube. Axial velocities of the transported particles are obtained. Some important features of particle motion governing high transportation efficiency of the spiral flow are revealed by investigating probability density distribution of particle locations in a pipe cross-section.  相似文献   

14.
The concurrent upward two-phase flow of air and water in a long vertical large diameter pipe with an inner diameter (D) of 200 mm and a height (z) of 26 m (z/D = 130) was investigated experimentally at low superficial liquid velocities from 0.05009 to 0.3121 m/s and the superficial gas velocities from 0.01779 to 0.5069 m/s. The resultant void fractions range from 0.03579 to 0.4059. According to the observations using a high speed video camera, the flow regimes of bubbly, developing cap bubbly and fully-developed cap bubbly flows prevailed in the flows. The developing cap bubbly flow appeared as a flow regime transition from bubbly to fully-developed cap bubble flow in the vertical large diameter pipe. The developing cap bubbly flow changes gradually and lasts for a long time period and a wide axial region in the flow direction, in contrast to a sudden transition from bubbly to slug flows in a small diameter pipe. The analysis in this study showed that the flow regime transition depends not only on the void fraction but also on the axial distance in the flow and the pipe diameter. The axial flow development brings about the transition to happen in a lower void fraction flow and the increase of pipe diameter causes the transition to happen in a higher void fraction flow. The measured void fraction showed an N-shaped axial changing manner that the void fraction increases monotonously with axial position in the bubbly flow, decreases non-monotonously with axial position in the developing cap bubbly flow, and increases monotonously again with axial position in the fully-developed cap bubbly flow. The temporary void fraction decrease phenomenon in the transition region from bubbly to cap bubbly flow can be attributed to the formation of medium to large cap bubbles and their gradual growth into the maximum size of cap bubble and/or cluster of large cap bubbles in the developing cap bubbly flow. In order to predict the N-shaped axial void fraction changing behaviors in the flow regime transition from bubbly to cap bubbly flow, the existing 12 drift flux correlation sets for large diameter pipes are reviewed and their predictabilities are studied against the present experimental data. Although some drift flux correlation sets, such as those of Clark and Flemmer (1986) and Hibiki and Ishii (2003), can predict the present experimental data with reasonable average relative deviations, no drift flux correlation set for distribution parameter and drift velocity can give a reliable prediction for the observed N-shaped axial void fraction changing behaviors in the region from bubbly to cap bubbly flow in a vertical large diameter pipe.  相似文献   

15.
The paper examines the use of expressions proposed by Csanady to predict the influence of the crossing trajectory and continuity effects on the decorrelation time scales of the fluid along solid particle trajectories in horizontal and downward vertical channel flows. The model is evaluated using data provided by a direct numerical simulation (DNS) of the carrier phase combined with a Lagrangian simulation of discrete particle (LS). Two particle relaxation times and two values of the gravity acceleration are considered. The results show the possibility of using Csanady’s expressions in a turbulent channel flow provided that the spatial and temporal correlations anisotropy is included in the model. As in isotropic homogeneous turbulence, a decrease of the decorrelation time scales is found to be more important in the directions perpendicular to the mean relative velocity.  相似文献   

16.
Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air–water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam–water annular flow conditions. In each experiment, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using the liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant [Sawant, P.H., Ishii, M., Mori, M., 2008. Droplet entrainment correlation in vertical upward co-current annular two-phase flow. Nucl. Eng. Des. 238 (6), 1342–1352] for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible.Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air–water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air–water, helium–water and air–genklene experimental data measured by Willetts [Willetts, I.P., 1987. Non-aqueous annular two-phase flow. D.Phil. Thesis, University of Oxford]. However, comparison of the correlations with the steam–water data available in literature showed significant discrepancies. It is proposed that these discrepancies might have been caused due to the inadequacy of the liquid film extraction method used to measure the entrainment fraction or due to the change in mechanism of entrainment under high liquid flow conditions.  相似文献   

17.
A physical model was developed to study heat transfer in turbulent dispersed flow at very high vapor quality in a vertical pipe by numerically solving the coupling governing differential equations for both phases. Major heat transfer mechanisms included in the model were the thermal nonequilibrium effects, droplet vaporization, droplet deposition on the duct wall and thermal radiative transfer. The predicted results indicated that vapor superheating is dominant for the cases with high wall superheat, otherwise droplet vaporization dominates the energy transport processes. Heat transfer during the droplet-wall interaction only exists at low wall superheat but in small amounts.  相似文献   

18.
The bubble and liquid turbulence characteristics of air–water bubbly flow in a 200 mm diameter vertical pipe was experimentally investigated. The bubble characteristics were measured using a dual optical probe, while the liquid-phase turbulence was measured using hot-film anemometry. Measurements were performed at six liquid superficial velocities in the range of 0.2–0.68 m/s and gas superficial velocity from 0.005 to 0.18 m/s, corresponding to an area average void fraction from 1.2% to 15.4%. At low void fraction flow, the radial void fraction distribution showed a wall peak which changed to a core peak profile as the void fraction was increased. The liquid average velocity and the turbulence intensities were less uniform in the core region of the pipe as the void fraction profile changed from a wall to a core peak. In general, there is an increase in the turbulence intensities when the bubbles are introduced into the flow. However, a turbulence suppression was observed close to the wall at high liquid superficial velocities for low void fractions up to about 1.6%. The net radial interfacial force on the bubbles was estimated from the momentum equations using the measured profiles. The radial migration of the bubbles in the core region of the pipe, which determines the shape of the void profile, was related to the balance between the turbulent dispersion and the lift forces. The ratio between these forces was characterized by a dimensionless group that includes the area averaged Eötvös number, slip ratio, and the ratio between the apparent added kinetic energy to the actual kinetic energy of the liquid. A non-dimensional map based on this dimensionless group and the force ratio is proposed to distinguish the conditions under which a wall or core peak void profile occurs in bubbly flows.  相似文献   

19.
A wide range of experimental holdup data, from different sources, are analyzed based on a theoretical model proposed in this work to evaluate the holdup in horizontal pipes. 2276 gas–liquid flow experiments in horizontal pipelines with a wide range of operational conditions and fluid properties are included in the database. The experiments are classified by mixture Reynolds number ranges and composite analytical expressions for the relationship between the liquid holdup and no-slip liquid holdup vs. the gas–liquid volumetric flow rate are obtained by fitting the data with logistic dose curves. The Reynolds number appropriate to classify the experimental data for gas–liquid flows in horizontal pipes is based on the mixture velocity and the liquid kinematic viscosity. Composite power law holdup correlations for flows sorted by flow pattern are also obtained. Error estimates for the predicted vs. measured holdup correlations together with standard deviation for each correlation are presented. The accuracy of the correlations developed in this study is compared with the accuracy of 26 previous correlations and models in the literature. Our correlations predict the liquid holdup in horizontal pipes with much greater accuracy than those presented by previous authors.  相似文献   

20.
In this work, we present a numerical study to investigate the hydrodynamic characteristics of slug flow and the mechanism of slug flow induced CO2 corrosion with and without dispersed small bubbles. The simulations are performed using the coupled model put forward by the authors in previous paper, which can deal with the multiphase flow with the gas–liquid interfaces of different length scales. A quasi slug flow, where two hypotheses are imposed, is built to approximate real slug flow. In the region ahead of the Taylor bubble and the liquid film region, the presence of dispersed small bubbles has less impacts on velocity field, because there are no non-regular intensive disturbance forces or centrifugal forces breaking the balance of the liquid and the dispersed small bubbles. In the liquid slug region, the strong centrifugal forces generated by the recirculation below the Taylor bubble lead to the effect of heterogeneity, which makes the profile of the radial liquid velocity component sharper with higher volume fraction of dispersed small bubbles. The volume fraction has a maximum value in the range of r/R = 0.5–0.6. Meanwhile, it is usually higher than 0.35, which means that larger dispersed bubbles can be formed by coalescences in this region. These calculated results are in good agreement with experimental results. The wall shear stress and the mass transfer coefficient with dispersed small bubbles are higher than those without dispersed small bubbles due to enhanced fluctuations. For short Taylor bubble length, the average mass transfer coefficient is increased when the gas or liquid superficial velocity is increased. However, there may be an inflection point at low mixture superficial velocities. For the slug with dispersed small bubbles, the product scales still cannot be damaged directly despite higher wall shear stress. In fact, the alternate wall shear stress and the pressure fluctuations perpendicular to the pipe wall with high frequency are the main cause for breaking the product scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号