首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
For anisotropic nanoporous materials, guest diffusion is often reflected by a diffusion tensor rather than a scalar diffusion coefficient. Moreover, the resulting diffusion anisotropy may notably differ for different guest molecules. As a particular class of such systems, we consider an array of two types of channels, mutually intersecting each other, where the rates of diffusion in the different directions depend on the nature of the guest molecules. The simultaneous adsorption of two types of guest molecules is considered, as in technical applications of porous materials such as catalysis. A case study is presented in which atomistic molecular dynamics (MD) and coarse-grained dynamic Monte Carlo (DMC) simulations are compared and shown to yield qualitatively similar results for non-steady-state diffusion. The two techniques are complementary. MD simulations are able to predict the details of molecular propagation over distances of a few unit cells, whereas the evolution of sorption profiles over distances comparable with entire crystallites can be studied with DMC simulations. Consideration of these longer length and time scales is necessary for applications of such systems in chemical separations and heterogeneous catalysis.  相似文献   

2.
In this paper, a reversible light-responsive molecule-gated system based on mesoporous silica nanoparticles (MSN) functionalized with thymine derivatives is designed and demonstrated. The closing/opening protocol and release of the entrapped guest molecules is related by a photodimerization-cleavage cycle of thymine upon different irradiation. In the system, thymine derivatives with hydrophilicity and biocompatibility were grafted on the pore outlets of MSN. The irradiation with 365 nm wavelength UV light to thymine-functionalized MSN led to the formation of cyclobutane dimer in the pore outlet, subsequently resulting in blockage of pores and strongly inhibiting the diffusion of guest molecules from pores. With 240 nm wavelength UV light irradiation, the photocleavage of cyclobutane dimer opened the pore and allowed the release of the entrapped guest molecules. As a proof-of-the-concept, Ru(bipy)(3)(2+) was selected as the guest molecule. Then the light-responsive loading and release of Ru(bipy)(3)(2+) were investigated. The results indicated that the system had an excellent loading amount (53 μmol g(-1) MSN) and controlled release behavior (82% release after irradiation for 24 h), and the light-responsive loading and release procedure exhibited a good reversibility. Besides, the light-responsive system loaded with Ru(bipy)(3)(2+) molecule could also be used as a light-switchable oxygen sensor.  相似文献   

3.
Pore-space homogeneity of zeolite NaX was probed by pulsed field gradient (PFG) NMR diffusion studies with n-butane as a guest molecule. At a loading of 0.75 molecules per supercage, a wide spectrum of diffusivities was observed. Guest molecules in the (well-shaped) zeolite crystallites were thus found to experience pore spaces of quite different properties. After loading enhancement to 3 molecules per supercage, however, molecular propagation ideally followed the laws of normal diffusion in homogeneous media. At sufficiently high guest concentrations, sample heterogeneity was thus found to be of no perceptible influence on the guest mobilities anymore.  相似文献   

4.
A two-dimensional molecular template structure of 1,3,5-benzenetricarboxylic acid (trimesic acid, TMA) was formed on a highly oriented pyrolytic graphite surface (HOPG) by self-assembly at the liquid-solid interface. Scanning tunneling microscopy (STM) investigations show high-resolution images of the porous structure on the surface. After the host structure was created, coronene molecules were inserted as guest molecules into the pores. STM results indicate that some of the guest molecules rotate inside their molecular bearing. Further investigations show that single coronene molecules can be directly kicked out of their pores by means of STM.  相似文献   

5.
Porous crystals are excellent materials with potential spatial functions through molecular encapsulation within the pores. Co‐encapsulation of multiple different molecules further expands their usability and designability. Herein we report the simultaneous arrangement of up to three different guest molecules, TTF (tetrathiafulvalene), ferrocene, and fluorene, on the pore surfaces of a porous crystalline metal–macrocycle framework (MMF). The position and orientation of adsorbed molecules arranged in the pore were determined by single‐crystal X‐ray diffraction analysis. The anchoring effect of hydrogen bonds between the hydroxy groups of the guest molecules and inter‐guest cooperation and competition are significant factors in the adsorption behaviors of the guest molecules. This finding would serve as a design basis of multicomponent functionalized nanospaces for elaborate reactions that are realized in enzymes.  相似文献   

6.
Single dye molecules incorporated into a mesoporous matrix can act as highly sensitive reporters of their environment. Here, we use single TDI molecules incorporated as guests into hexagonal mesoporous films containing highly structured domains. The dye molecules allow us to map the size of these domains which can extend to over 100 microm. Investigation of the translational and orientational dynamics via single molecule fluorescence techniques gives structural as well as dynamical information about the host material. In an air atmosphere, the guest molecules show no movement but perfect orientation along the pore direction. The diffusion of the TDI molecules can be induced by placing the mesoporous film in a saturated atmosphere of chloroform. In single molecule measurements with very high positioning accuracy (down to 2-3 nm) the movement of molecules could be observed even between neighboring channels. This reveals the presence of defects like dead ends closing the pores or small openings in the silica walls between neighboring channels, where molecules can change from one channel to the next. A statistical analysis demonstrates that the diffusion of TDI in the mesoporous film cannot be described with a 1D-random diffusion but is more complicated due to the presence of adsorption sites in which the TDI molecules can be occasionally trapped.  相似文献   

7.
The pulsed field gradient nuclear magnetic resonance method has been employed to probe self-diffusion of organic guest molecules adsorbed in porous silicon with a 3.6 nm pore size. The molecular self-diffusion coefficient and intrapore adsorption were simultaneously measured as a function of the external vapor pressure. The latter was varied in a broad range to provide pore loading from less than monolayer surface coverage to full pore saturation. The measured diffusivities are found to be well-correlated with the adsorption isotherms. At low molecular concentrations in the pores, corresponding to surface coverages of less than one monolayer, the self-diffusion coefficient strongly increases with increasing concentration. This observation is attributed to the occurrence of activated diffusion on a heterogeneous surface. Additional experiments in a broad temperature range and using binary mixtures confirm this hypothesis.  相似文献   

8.
Encapsulation and controlled release of volatile molecules such as fragrances in a designed manner is important but challenging for the flavor and fragrance industry. Here, we report the tuning release of volatile molecules by postsynthetic modification of an amine-terminated metal-organic framework(MOF) MIL-101-NH_2. By amidation, we obtained three MIL-101 MOFs, the trimethylacetamideterminated TC-MIL-101, the benzamide-terminated BC-MIL-101, and the oxalic acid monoamideterminated OC-MIL-101. All the MOFs can efficiently encapsulate volatile molecules. Moreover, we demonstrate that the release profile of volatiles can be widely tuned to sustain the release in several days to months and even over a year using different modified MIL-101 MOFs. We show that the release profiles are correlated with the binding energies between the guest volatiles and pores in MOFs. The pore diffusion and the synergistic transport are the rate-limiting step of the guest molecules from the modified MOFs.  相似文献   

9.
Photoresponsive functional materials have gained increasing attention due to their externally tunable properties. Molecular switches embedded in these materials enable the control of phenomena at the atomic level by light. Metal–organic frameworks (MOFs) provide a versatile platform to immobilize these photoresponsive units within defined molecular environments to optimize the intended functionality. For the application of these photoresponsive MOFs (pho-MOFs), it is crucial to understand the influence of the switching state on the host–guest interaction. Therefore, we present a detailed insight into the impact of molecular switching on the intermolecular interactions. By performing atomistic simulations, we revealed that due to different interactions of the guest molecules with the two isomeric states of an azobenzene-functionalized MOF, both the adsorption sites and the orientation of the molecules within the pores are modulated. By shedding light on the host–guest interaction, our study highlights the unique potential of pho-MOFs to tailor molecular interaction by light.  相似文献   

10.
We present here the formation of giant pores in surface-confined molecular networks of a triangular-shaped dehydrobenzo-[12]annulene derivative: the diameter of the pores reaches over 7 nm and the giant pores are used as templates to accommodate a giant molecular spoked wheel, which allows us to observe rotational and adsorption-desorption dynamics of single guest molecules.  相似文献   

11.
Molecular motors are fascinating nanomachines. However, constructing smart materials from such functional molecules presents a severe challenge in material science. Here, we present a bottom-up layer-by-layer assembly of oriented overcrowded-alkene molecular motors forming a crystalline metal–organic framework thin film. While all stator parts of the overcrowded-alkene motors are oriented perpendicular to the substrate, the rotors point into the pores, which are large enough allowing for the light-induced molecular rotation. Taking advantage of the thin film's transparency, the motor rotation and its activation energy are determined by UV/Vis spectroscopy. As shown by gravimetric uptake experiments, molecular motors in crystalline porous materials are used, for the first time, to control the adsorption and diffusion properties of guest molecules in the pores, here, by switching with light between the (meta-)stable states. The work demonstrates the potential of designed materials with molecular motors and indicates a path for the future development of smart materials.  相似文献   

12.
建立了一个β分子筛上分子扩散的模型. 该模型中, 分子在β分子筛中运动是在不同吸附点位上作无规行走. β孔道的拓扑结构和在两种孔道吸附位上不同的跃迁几率导致分子沿两个主轴方向扩散, 扩散系数存在一个关联关系; 分子动力学对不同温度下苯分子在β分子筛上扩散模拟证实了这一关联关系. 氩原子在不同作用半径下的动力学模拟表明, 分子作用半径大小是满足随机行走假设的重要条件, 即该模型要求扩散分子作用半径足够大, 与分子筛孔径相近.  相似文献   

13.
冯桂龙  王宏  杨亚江 《化学学报》2008,66(5):576-580
采用二(4-硬脂酰胺基苯基)甲烷(BSAPM)为凝胶剂制备了含有小分子水杨酸和若丹明B的1,1,2-三氯乙烷(TCE)超分子有机凝胶. 以超分子有机凝胶作为主体, 客体小分子水杨酸和若丹明B可轻微降低超分子有机凝胶的相转变温度(TGS). 用紫外-可见光度法研究了超分子凝胶中两种客体小分子在静态下的扩散释放. 结果表明其释放率随凝胶剂浓度的增加而降低. 客体小分子的体积大小对其释放有明显的影响, 分子体积较大的若丹明B的释放率低于分子体积较小的水杨酸. 另外, 若丹明B的扩散系数也低于水杨酸, 且随凝胶剂浓度的增加, 这种趋势更为明显. 两种客体分子的累积释放率与时间的平方根成良好的线性关系, 符合Higuchi方程, 属扩散控制的Fickian释放机理.  相似文献   

14.
石墨烯是一种具有广泛应用前景的纳米材料,特别是由石墨烯片层自组装形成的二维纳米通道能够应用于物质的过滤分离.本文采用分子动力学模拟方法研究了原态石墨烯/羟基改性石墨烯狭缝孔道中水分子的微观行为,模拟计算了水的界面结构性质和扩散动力学性质,所研究的石墨烯孔宽为0.6-1.5 nm.模拟结果表明,在石墨烯狭缝孔道中,水分子受限结构呈现层状分布,在超微石墨烯孔道(0.6-0.8 nm)中水分子可形成特殊的环状有序结构,石墨烯表面可诱导产生特殊的水分子界面取向.在石墨烯孔道中,水分子的扩散运动低于主体相水分子的扩散运动,羟基化石墨烯孔道可以促使水分子的扩散能力降低.对于改性石墨烯狭缝孔道,由于羟基的作用,水分子可以自发渗入0.6 nm的石墨烯孔道内.模拟所得到的受限水分子的动力学性质与水分子在石墨烯孔道内的有序结构有关.本文研究结果将有助于分析理解水分子通过石墨烯纳米通道的渗透机理,为设计基于石墨烯的纳米膜提供理论指导.  相似文献   

15.
Nanoporous molecular networks formed spontaneously by organic molecules adsorbed on solid substrates are promising materials for future nanotechnological applications related to separation and catalysis. With their unique ordered structure comprising nanocavities of a regular shape planar networks can be treated as 2D analogs of bulk nanoporous materials. In this report we demonstrate how the Monte Carlo simulation method can be effectively used to predict morphology of self-assembled porous molecular architectures based on structural properties of a building block. The simulated results refer to the assemblies created by cross-shaped organic molecules which are stabilized by different intermolecular interactions, including hydrogen bonding and van der Waals interactions. It is demonstrated that tuning of size and aspect ratio of the building block enables the creation of largely diversified extended structures comprising pores of a square and rectangular shape. Our theoretical predictions can be helpful in custom design of functional adsorbed overlayers for controlled deposition, sensing and separation of guest molecules.  相似文献   

16.
The inclusion of ferrocene and its derivative in metal-organic porous material MOF-5 is achieved by vapor diffusion; single-crystal X-ray diffraction studies using synchrotron radiation of ferrocene-loaded MOF-5 reveal well-ordered guest molecules packed into the pores.  相似文献   

17.
Cyclodextrins (CDs) have been widely used in host-guest molecular recognition because of their chiral and hydrophobic cavities. For example, β-cyclodextrin (βCD) lodged as a molecular adaptor in protein pores such as α-hemolysin (αHL) is used for stochastic sensing. Here, we have tuned the cavity and overall size of βCD by replacing a single oxygen atom in its ring skeleton by a disulfide unit in two different configurations to both expand our ability to detect analytes and understand the interactions of βCD with protein pores. The three-dimensional structures of the two stereoisomeric CDs have been determined by the combined application of NMR spectroscopy and molecular simulation and show distorted conformations as compared to natural βCD. The interactions of these synthetic βCD analogues with mutant αHL protein pores and guest molecules were studied by single-channel electrical recording. The dissociation rate constants for both disulfide CDs from the mutant pores show ~1000-fold increase as compared to those of unaltered βCD, but are ~10-fold lower than the dissociation rate constants for βCD from wild-type αHL. Both of the skeleton-modified CDs show altered selectivity toward guest molecules. Our approach expands the breadth in sensitivity and diversity of sensing with protein pores and suggests structural parameters useful for CD design, particularly in the creation of asymmetric cavities.  相似文献   

18.
Clathrates have been proposed for use in a variety of applications including gas storage, mixture separation and catalysis due to the potential for controlled guest diffusion through their porous lattices. Here molecular dynamics simulations are employed to study guest transport in clathrates of hydroquinone (HQ) and Dianin’s compound (DC). Systems investigated were HQ with methanol and acetonitrile, and DC with methanol and ethanol. Simulations were set up with one guest in the pore, two guests in the pore and one vacancy in the pore and a filled pore, and free‐energy barriers for movement between cavities of the pore were estimated for all cases. Comparison between these simulations indicates that guest transport most likely proceeds by molecules moving from full to empty cavities consecutively, one by one, rather than in a concerted manner. Thus, the presence of empty cavities is very important for guest transport, which becomes more energetically demanding in fully loaded systems. Flexibility of the host can assist guest transport. In the studied DC clathrates transport occurs via an intermediate conformation in which the hydroxyl group of the alcohol guest molecule participates in the hydrogen‐bonded ring of the host. We also address the issue of the number of methanol guest molecules that DC accommodates, for which conflicting information exists. We found that this is likely to be temperature dependent and suggest that under some conditions the system is most likely non‐stoichiometric.  相似文献   

19.
Supramolecular complexes consisting of a single‐stranded oligothymine ( dTn ) as the host template and an array of guest molecules equipped with a complementary diaminotriazine hydrogen‐bonding unit have been studied with electrospray‐ionization mass spectrometry (ESI‐MS). In this hybrid construct, a supramolecular stack of guest molecules is hydrogen bonded to dTn . By changing the hydrogen‐bonding motif of the DNA host template or the guest molecules, selective hydrogen bonding was proven. We were able to detect single‐stranded‐DNA (ssDNA)–guest complexes for strands with lengths of up to 20 bases, in which the highest complex mass detected was 15 kDa; these complexes constitute 20‐component self‐assembled objects. Gas‐phase breakdown experiments on single‐ and multiple‐guest–DNA assemblies gave qualitative information on the fragmentation pathways and the relative complex stabilities. We found that the guest molecules are removed from the template one by one in a highly controlled way. The stabilities of the complexes depend mainly on the molecular weight of the guest molecules, a fact suggesting that the complexes collapse in the gas phase. By mixing two different guests with the ssDNA template, a multicomponent dynamic library can be created. Our results demonstrate that ESI‐MS is a powerful tool to analyze supramolecular ssDNA complexes in great detail.  相似文献   

20.
金属-有机骨架材料中吸附气体的扩散速率   总被引:1,自引:0,他引:1  
采用分子动力学方法,以甲烷为探针分子研究了不同压力条件下气体在具有不同孔道结构的金属-有机骨架材料(MOFs)中的扩散速率.通过计算气体在八种材料中的自扩散系数,并结合气体分子在材料中的质心分布图等,讨论了气体扩散速率与孔道结构之间的关系.研究结果表明:对于同时含有孔笼(pocket)和三维正交孔道(channel)结构的MOF材料(P-C材料),低压时甲烷气体吸附在孔笼结构中,随着压力的升高,气体分子开始进入正交孔道,同时其自扩散系数增加;而对于只含有三维立方孔道结构的IRMOF(isoreticular MOF)系列材料,在中低压范围内,气体分子在其中的自扩散系数随压力变化较小.当压力进一步升高时,气体分子在材料孔道中的吸附逐渐接近饱和,其自扩散系数均降低.因此,在不同MOF材料中气体分子扩散速率的差异主要取决于孔道结构的不同.对P-C材料,中低压下通过控制压力可以控制气体在其中的扩散速率,从而为MOF材料在气体存储、分离等方面的实际应用提供参考信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号