首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyethylene (PE)‐layered vermiculite (VMT) nanocomposites were fabricated via direct melt compounding in a twin‐screw extruder followed by injection molding. Exfoliated PE/VMT nanocomposites were readily prepared via in situ melt mixing of maleic anhydride modified VMT with PE. Maleic anhydride acts as either the intercalation agent for VMT or as a compatibilizer for the PE and VMT phases. X‐ray diffraction and transmission electron microscopic observations revealed the formation of exfoliated PE/VMT nanocomposites. The experimental results showed that the storage modulus and strength of nanocomposites tend to increase with an increasing VMT content. Nearly 25.35% increment in the tensile strength and 50% increment in the storage modulus were achieved by incorporating 4 wt % VMT into PE. The thermal properties of the nanocomposites were investigated by dynamic mechanical analysis and differential scanning calorimetry. The glass‐transition temperature of PE/VMT nanocomposites appeared to increase upon the introduction of VMT into the PE matrix. The effects of maleic anhydride addition on the formation of the PE/VMT nanocomposites are discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1476–1484, 2003  相似文献   

2.
In this paper, cetyl pyridium chloride (CPC) was employed to modify the montmorillonite. TGA analysis shows that the organic modified clay has higher thermal stability than hexadecyl trimethyl ammonium chloride modified montmorillonite and is suitable to be used for preparing poly(butylene terephthalate) (PBT)/clay nanocomposites at the high temperature. And then PBT/clay nanocomposites were prepared by direct melt intercalation. The results of XRD, TEM and HREM experiments show the formation of exfoliated-intercalated structure. The thermal stability of the nanocomposites does not evidently decrease, but the char residue at 600 °C remarkably increase compared with pure PBT. DSC results indicate that clay improves the melting temperature, the crystallization rate and crystallinity of the PBT molecules in the nanocomposites.  相似文献   

3.
Polyethylene and polypropylene nanocomposites were investigated with focus on mechanical and barrier properties. Structure was observed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Four types of nano-filler were used: Nanofil 5, 8, 9 and 3000. In case of polyethylene nanocomposites the dispersion and intercalation was to low extent. Mechanical and barrier properties were worse compared to pure PE. In case of polypropylene with Nanofil 5, 9 and 3000 tensile strength was better compared to pure PP. Also PP with Nanofil 9 and 3000 had better barrier properties than pure PP for both O2 and CO2. This was explained by better intercalation and dispersion of the filler documented by XRD measurement and TEM observation.  相似文献   

4.
Polyethylene (PE) was chemically modified with grafting maleic anhydride (MAH) monomer on its backbone at first. Then the melt-direct intercalation method was employed to prepare two kinds of nanocomposites, polyethylene (PE)/organic montmorillonite (Org-MMT) and maleic anhydride grafted polyethylene (PE-g-MAH)/Org-MMT nanocomposites. X-ray diffractometery (XRD) was used to investigate the intercalation effect and transmission electron microscopy (TEM) to observe the dispersion of Org-MMT interlayers in matrixes. The results show that an intercalated structure would be acquired on mixing the PE and Org-MMT; and an almost exfoliated system would be obtained by mixing the PE-g-MAH and Org-MMT. Moreover, further measurements via thermogravimetric (TGA) and differential scanning calorimetry (DSC) showed that both of the nanocomposites had a higher thermal decomposition temperature and a higher crystallization temperature when compared to the original matrix. At the same time, the thermal and crystal properties for the PE-g-MAH prepared in this experiment are also discussed.  相似文献   

5.
Poly(propylene)/clay nanocomposites were prepared by melt intercalation, using pristine montmorillonite (MMT), hexadecyl trimethyl ammonium bromide (C16), poly(propylene) (PP) and maleic acid (MA) modified PP (MAPP), The nanocomposites structure is demonstrated using X‐ray diffraction (XRD) and high resolution electronic microscopy (HREM). Our purpose is to provide a general concept for manufacturing polymer nanocomposites by melt intercalation starting from the pristine MMT. We found different kneaders (twin‐screw extruder or twin‐roll mill) have influence on the morphology of the PP/clay nanocomposites. Thermogravimetric analysis (TGA) shows that the thermal stability of PP/clay nanocomposites has been improved compared with that of pure PP. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
10-Hydroxycamptothecin (HCPT) as a hydrophobic anticancer drug brings many challenges in the clinical applications due to its poor water solubility and the presence of a chemically unstable lactone ring. In this work, the nanocomposites of HCPT intercalated layered double hydroxide (LDH) were prepared by a secondary intercalation method, and the encapsulated HCPT could keep the biologically active lactone form. A Zn–Al–NO3 LDH was pillared with sebacate anions by a co-precipitation method in an aqueous medium, and then HCPT was intercalated into the LDH's gallery via hydrophobic interaction in an ethanol medium. The parallel alkyl chains of perpendicularly arranged sebacate anions in the LDH gallery provide a hydrophobic space for the drug intercalation. The in vitro release kinetics of HCPT from the nanocomposites could be fitted with the pseudo-second-order kinetic model, and the diffusion of HCPT through the LDH particles played an important role in controlling the drug release. The nanocomposites can be considered as a potential drug delivery system.  相似文献   

7.
Polyethylene(PE)/clay nanocomposites have been successfully prepared by in situ polymerization with an intercalation catalyst titanium-montmorillonite (Ti-MMT) and analyzed by X-ray diffraction analysis (XRD), Fourier transform infrared analysis (FT-IR), Transmission electron microscopy (TEM), differentail scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and tensile testing. XRD and TEM indicate that the clay is exfoliated into nanometer size and disorderedly dispersed in the PE matrix, and the PE crystallinity of PE/clay nanocomposite declines to 15∼30%. Compared with pure PE, PE/clay nanocomposites behave higher thermal, physical and mechanical properties; the layer structure of the clay decreases the polymerization activity and produce polymer with a high molecular weight. For PE/clay nanocomposites, the highest tensile strength of 33.4 MPa and Young's modulus of 477.4 MPa has been achieved when clay content is 7.7 wt %. The maximum thermal decomposition temperature is up to 110 °C higher, but the thermal decomposition temperature of the PE/clay nanocomposites decreases with the increases of the clay contents in the PE matrix.  相似文献   

8.
Polyethylene/montmorillonite clay nanocomposites were obtained via direct melt intercalation. The clay was organically modified with four different types of quaternary ammonium salts. The objective of this work is to study the use of montmorillonite clay in the production of nanocomposites by means on rheological, mechanical and crystallization properties of nanocomposites and to compare to the properties of the matrix and PE/unmodified clay nanocomposites. In general, the tensile test showed that the yield strength and modulus of the nanocomposites are close to the pure PE. Apparently, the mixture with Dodigen salt seems to be more stable than the pure PE and PE/unmodified clay.  相似文献   

9.
Dielectric constant ??? and loss factor ??? were measured in intercalated polypyrrole/aluminum pillared montmorillonite (PPy/Al-PMMT) clay nanocomposites in the frequency range 100 Hz to 1 MHz. The PPy/Al-PMMT nanocomposites were prepared by in situ polymerization of pyrrole in aqueous dispersion of varying amounts of (Al-PMMT) clay from 0.2 to 10%, using FeCl3 · 6H2O as an oxidant. Formation of the nanocomposite was studied by FTIR and intercalation of PPy in the clay galleries was confirmed by XRD. The nanocomposites exhibited very large values of ??? and ??? at low frequency which decreased with frequency and increased with the clay content in the samples. Electric modulus formalism exhibited a peak in the frequency dependence curves of imaginary part of the electric modulus due to conductivity relaxation process. The peak of conductivity relaxation shifted towards higher frequencies and the magnitude of relaxation decreased with the increase of MMT content in the composites.  相似文献   

10.
通过微波水解法制备了ZnO柱撑皂石,并以其为加工助剂制备了聚乳酸(PLA)/ZnO柱撑皂石纳米复合材料.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、对ZnO柱撑皂石及PLA/ZnO柱撑皂石纳米复合材料的结构进行了表征,并对其力学性能和热稳定性能进行了测试.微观结构分析表明,ZnO柱撑皂石呈现剥离状,并均匀分散在PLA基质中.力学性能研究表明0.3%ZnO柱撑皂石的加入有助于改善PLA复合材料的断裂伸长率.SEM分析表明PLA复合材料的断面发生明显改变,表现良好韧性;DSC结果显示纳米ZnO柱撑皂石可以降低复合材料的玻璃化转变温度、结晶温度,有助于提高PLA复合材料的结晶度,与XRD分析相吻合;热重分析表明ZnO柱撑皂石可以提高PLA复合材料的热稳定性.测试结果表明,ZnO柱撑皂石在PLA基质中起到了异相成核的作用,促进了PLA基质的结晶.  相似文献   

11.
采用离子交换法, 用十六烷基三甲基溴化铵处理钙基蒙脱土(MMT), 使蒙脱土的层间距由1.49 nm扩大到2.21 nm, 制备了环氧树脂/ BADK/MMT纳米复合材料, 并用XRD等手段研究了有机蒙脱土在环氧树脂中的插层及剥离行为. 研究结果表明, 蒙脱土含量及环氧树脂与有机土的混合温度和时间均对固化后复合材料的剥离产生影响, 只有在特定条件下才能得到剥离型纳米复合材料.  相似文献   

12.
Montmorillonite(MMT) was directly modified with hexadecyl trimethyl ammonium bromide. The interlayer spacing of the organophilic montmorillonite(organo-MMT) corresponding to the d(001) plane peak was 2.21 nm. The influences of the content of organo-MMT and mixing conditions including mixing temperature and mixing time on the intercalation and exfoliation structures of MMT/epoxy resin composites were investigated by wide X-ray diffraction(WXRD). The X-ray patterns reveal that organo-MMT was intercalated by the epoxy resin during mixing process. Only under certain mixing conditions, could the exfoliation nanocomposites be formed. The mechanical and thermal properties of the composites were measured. The results indicate that the composites have better mechanical properties and higher Tg than those of the pristine epoxy resin.  相似文献   

13.
This work addresses the optimization of the morphology, thermal, and mechanical properties of polypropylene/layered double hydroxide (LDH) nanocomposites. For this, the nanofillers were modified by a calcination rehydration process using two surfactants, sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate, respectively. The nanofillers were characterized at each step of the modification process by thermal gravimetry, X‐ray diffraction, and Infra red spectroscopy. Furthermore, the impact of anionic modifiers on the filler surface energy and on the interactions toward water was analyzed. Polypropylene (PP)/LDH nanocomposites were then prepared by a melt intercalation process and a high molar mass maleic anhydride functionalized polypropylene (PPgMA) was introduced as a compatibilizer. The dispersion of LDH in the PP matrix was characterized and the thermal and mechanical properties of the corresponding nanocomposites were determined and discussed as a function of the filler modification, of the nanocomposite morphology, and of the filler/matrix interfacial properties. The nanocomposites prepared from SDS modified LDH and PPgMA exhibited superior properties thanks to an optimized filler dispersion state and improved interfacial interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 782–794  相似文献   

14.
Polycarbonate was melt blended with solid bisphenol A bis(diphenyl phosphate), and a series of organoclays. Effects of the organoclay modifiers on the flammability, thermal and mechanical properties of the nanocomposites were studied by limiting oxygen index, UL-94 burning test, thermogravimetric analysis, differential scanning calorimetry, tensile test and dynamic mechanical analysis. Although all the nanocomposites exhibit an intercalated-exfoliated morphology, they vary in the magnitude of intercalation revealed by X-ray diffraction and transmission electron microscopy. Flammability of the nanocomposites is strongly related to the thermal stability rather than the morphology. Glass transition temperature (Tg) and mechanical properties are controlled by both the morphology and the affinity of the organoclays with the matrix. The modifier containing hydroxyl moiety has stronger interactions with the matrix but it can promote its degradation, thus the corresponding nanocomposite exhibits a better intercalated morphology, higher Tg, superior strength and modulus however a worse thermal stability and flame retardancy. An additional silane within the organoclays would make the organoclays more compatible with the matrix but be a steric obstacle to the intercalation of the matrix chains; however, flame retardancy of the corresponding nanocomposite is enhanced due to the flame retardant nature of the silane. Similarly, the modifier bearing two long alkyl tails shows stronger affinity with the matrix than the one bearing a single tail, but it would hinder the intercalation due to the steric effect. These establishments between organoclay modifiers and the properties of nanocomposites might be guidance for developing materials with practical applications.  相似文献   

15.
This work prepared poly(ethylene glycol‐co‐1,3/1,4‐cyclohexanedimethanol terephthalate) (PETG)/organoclay nanocomposites via a melt intercalation process and investigated the influences of organoclay aspect ratio and organoclay content on the dispersed state, mechanical, thermal, gas barrier, and heat recovery properties of PETG/organoclay nanocomposites. X‐ray diffraction (XRD) and transmission electron microscopic analyses showed that the organoclay dispersed in the polymer matrix with intercalation in the nanometer scale range. Differential scanning calorimetry (DSC) analysis demonstrated that all of the obtained nanocomposites were amorphous, indicating that the addition of organoclay did not affect the amorphous nature of PETG. The gas barrier properties of the nanocomposites improved with organoclay content and the properties were also affected by the organoclay aspect ratio. Water vapor and oxygen transmission rates (OTRs) of PETG/organoclay nanocomposites containing 3 phr Cloisite 15A, and 3 phr modified polymer grade Na‐montmorillonites (MPGN) were the lowest among the samples tested, and were 41.7 and 44.3%, respectively, of those of neat PETG. Similar organoclay content‐ and aspect ratio‐related effects were observed in the mechanical and heat recovery properties of the tested nanocomposites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
CdS/Rectorite nanocomposites were prepared through hydrothermal method by using Cd[NH2CSNH2]2Ac2 complex as precursor of CdS which was derived from cadmium acetate and thiourea. The obtained nanocomposites were characterized by X-ray diffraction (XRD), Fourier transfer infrared spectra (FTIR), diffusion reflection spectra (DRS), transmission electron microscopy (TEM) and the selected area electron diffraction (SAED) patterns. Experimental results indicate that CdS exist in at least three forms: CdS adsorbed at surface, CdS pillared in montmorillonite-like layers of Rectorite and CdS pillared in the new layered structure formed during the hydrothermal process. Those CdS crystals are hexagonal symmetry. The photoactivity and photostability of the obtained CdS/Rectorite nanocomposites are improved significantly compared to that of the reference Rectorite and pure CdS.  相似文献   

17.
A novel amorphous polyamide/montmorillonite nanocomposite based on poly(hexamethylene isophthalamide) was successfully prepared by melt intercalation. Wide angle X-ray diffraction and transmission electron microscopy showed that organoclay containing quaternary amine surfactants with phenyl and hydroxyl groups was delaminated in the polymer matrix resulting in well-exfoliated morphologies even at high montmorillonite content. Differential scanning calorimetry results indicated that clay platelets did not induce the formation of a crystalline phase in this amorphous polymer. Tensile tests demonstrated that the addition of nanoclay caused a dramatic increase in Young's modulus (almost twofold) and yield strength of the nanocomposites compared with the homopolymer. The nanocomposites exhibited ductile behavior up to 5 wt % of nanoclay. The improvement in Young's modulus is comparable with semicrystalline aliphatic nylon 6 nanocomposites. Both the main chain amide groups and the amorphous nature of the polyamide are responsible for enhancing the dispersion of the nanofillers, thereby, leading to improved properties of the nanocomposites. The structure-property relationship for these nanocomposites was also explored. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2605–2617, 2008  相似文献   

18.
Studies of thermal and fire-resistant properties of the polyethylene/organically modified montmorillonite (PE/MMT) nanocomposites prepared by means of melt intercalation are discussed. The sets of the data acquired with the aid of non-isothermal TG experiments have been treated by the model kinetic analysis. The extra acceleration of thermal-oxidative degradation of the nanocomposite which has been observed at the first stage of the overall process has been analyzed and is explained by the catalytic effect of the clay nanoparticles. The results of cone calorimetric tests lead to the conclusion that char formation plays a key role in the mechanism of flame retardation for nanocomposites.  相似文献   

19.
Thermally stable organically modified clays based on 1,3‐didecyl‐2‐methylimidazolium (IM2C10) and 1‐hexadecyl‐2,3‐dimethyl‐imidazolium (IMC16) were used to prepare poly(ethylene naphthalate) (PEN)/clay nanocomposites via a melt intercalation process. The clay dispersion in the resulting hybrids was studied by a combination of X‐ray diffraction, polarizing optical microscopy, and transmission electron microscopy. It was found that IMC16 provided better compatibility between the PEN matrix and the clay than IM2C10, as evidenced by some intercalation of polymer achieved in the PEN/IMC16‐MMT hybrid. The effects of clay on the crystal structure of PEN were investigated. It was found that both pristine MMT and imidazolium‐treated MMT enhanced the formation of the β‐crystal phase under melt crystallization at 200 °C. At 180 °C, however, the imidazolium‐treated MMT was found to favor the α‐crystal form instead. The difference in clay‐induced polymorphism behavior was attributed to conformational changes experienced by the clay modifiers as the crystallization temperature changes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1040–1049, 2006  相似文献   

20.
Organically modified montmorillonite was synthesized with a novel 1,2‐dimethyl‐3‐N‐alkyl imidazolium salt or a typical quaternary ammonium salt as a control. Poly(ethylene terephthalate) montmorillonite clay nanocomposites were compounded via melt‐blending in a corotating mini twin‐screw extruder operating at 285 °C. The nanocomposites were characterized with thermal analysis, X‐ray diffraction, and transmission electron microscopy to determine the extent of intercalation and/or exfoliation present in the system. Nanocomposites produced with N,N‐dimethyl‐N,N‐dioctadecylammonium treated montmorillonite (DMDODA‐MMT), which has a decomposition temperature of 250 °C, were black, brittle, and tarlike resulting from DMDODA degradation under the processing conditions. Nanocomposites compounded with 1,2‐dimethyl‐3‐N‐hexadecyl imidazolium treated MMT, which has a decomposition temperature of 350 °C, showed high levels of dispersion and delamination. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2661–2666, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号