共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of O(3P) atoms with propanehas been studied at temperatures near 300 K by using a discharge flow system. Oxygen atoms were generated in the absence of molecular oxygen by the reaction N + NO → N2 + O, nitrogen atoms having been generated in a microwave discharge. Rate constants for the reaction were measured in two ways, either by measurement of O-atom decay in the presence of excess propane or by measuring the change in propane concentration after an appropriate time in the presence of an excess of oxygen atoms. The two methods were in good agreement, and the mean rate constant at 306 K is given by A study of the products of the reaction under conditions corresponding to complete removal of oxygen atoms has shown that an important product of the reaction in the early stages is propene. This is difficult to explain interms of a mechanism involving alkoxy radicals similar to that which has been proposed for some other O(3P)–hydrocarbon reactions. An alternative mechanism is proposed in terms of successive hydrogen abstraction reactions. 相似文献
2.
The laser photolysis-long path transient absorption technique was used to study the mechanism and products of the reaction O(3P) + OClO (→M) Products (3) at 260 K in 100 to 400 torr of He, N2, and Ar. ClO was not detected as a reaction product, <5% yield, from this reaction at 400 torr and 260 K. A broad UV absorption feature associated with a product of this reaction, with a peak located at 260 nm, was observed. The peak absorption cross section of this species was measured to be (1.72 ± 0.12) × 10−17 cm2 molecule−1. The rate coefficient for the appearance of this species was measured to be (1.69 ± 0.46) × 10−13 cm3 molecule−1 s−1 and was independent of pressure. The rate coefficient for the appearance of the species is ca. 10 times lower than that for the disappearance of O(3P), indicating that the observed species is not a direct product of the reaction of O(3P) with OClO. Mechanistic considerations and the possible identity of the absorber are discussed. © 1997 John Wiley & Sons, Inc. 相似文献
3.
Morton A. Golub 《Macromolecular Symposia》1992,53(1):379-391
The reactions of polymer films with oxygen atoms are reviewed. Emphasis is on work from this laboratory on polybutadienes having different amounts of 1,4 or 1,2 double bonds and their polyalkenamer homologues, on a polyimide (Kapton), and on a series of polyolefins with increasing fluorine content ranging from polyethylene (PE) to polytetrafluoroethylene (PTFE). Interest in this topic stems from a need to understand the mechanism(s) of surface erosion, or etching, that occurs in organic polymers when exposed to the low Earth orbital (LEO) environment, where ground-state atomic oxygen [O(3P)] is the most abundant constituent. The major findings for O atom reactions with the polyalkenamers were: (1) etch rates increase with decrease in -CH=CH-unsaturation, starting with 1,4-polybutadiene and reaching the maximum rate with PE or ethylene-propylene rubber; (2) in polybutadienes having both 1,4 and 1,2 double bonds, the rate of O(3P)-induced etching is lower the higher the 1,2 content; and (3) the reactions are confined to the polymer surface. Relative etch rates for various commercial polymer films (e.g., Kapton, Teflon, PE) exposed to O(3P) downstream from a low-pressure, radio-frequency O2 plasma were compared with corresponding literature data for films exposed to O(3P) either during a Space Shuttle flight or in the plasma glow (where many species besides O(3P) are present). The use of O2 discharge reactors – whether exposures are conducted “out of the glow” or “in the glow” – cannot serve as a routine, ground-based simulation of exposures of a polymer to the LEO environment. ESCA analysis of the surfaces of Kapton and other polymers, before and after reaction with O(3P), showed that there is a steady-state competition between surface recession and oxidation. In a series of fluorine-containing polyolefins exposed to O(3P), the maximum oxygen uptake increased regularly with decrease in fluorine content, ranging from a minimum in PTFE to a maximum in PE. 相似文献
4.
John M. Roscoe 《国际化学动力学杂志》1982,14(5):471-478
The rate constant for the reaction of O(3P) with H2O2 was measured as a function of temperature and the [H2O2]0/[O]0 ratio. The numerical solution of the appropriate rate equations was used to arrive at a mechanism which adequately describes our results and the rather divergent data in the literature. A recommended expression for the temperature dependence of the absolute rate constant is presented from consideration of the available experimental data. 相似文献
5.
The reaction of O(3P), prepared from the Hg photosensitization of N2O, with C2HCl3 was studied at 25°C. The products of the reaction in the absence of O2 were CO, CHCl3, and polymer (as well as N2 from the N2O). The quantum yields of CO and CHCl3 were 0.23 ± 0.01 and 0.14 ± 0.05, is respectively independent of reaction conditions. The reaction mechanism is with k14a/k14 = 0.23, where k14a + k14b. Most of the HCl and CCl2 combine to form CHCl3, but some other products must also be formed to account for the difference in the CO and CHCl3 quantum yields. The C2HCl3O* adduct polymerizes without involving additional C2HCl3 molecules, since the quantum yield of C2HCl3 disappearance, ? Φ{C2HCl3}, was about 1.0 at high values of [N2O]/[C2HCl3]. The rate coefficient for the reaction of O(3P) with C2HCl3 is 0.10 that for the reaction of O(3P) with C2F4. In the presence of O2 the free radical chain oxidation occurs because of the reaction The main product is CHCl2CCl(O) with smaller amounts of CO and CCl2O, and some CO2. The chain lengths were long and values of ? Φ {C2HCl3} up to 90 were observed. 相似文献
6.
In this paper, we present direct dynamics calculations for the multiple-channel reaction of CH3CH2Cl with atomic O (3P) in a wide temperature range (200–3000 K), based on canonical variational transition state theory including small curvature corrections. Four distinct saddle points, one for α-abstraction and three for β-abstraction, have been located for this reaction. The potential energy surface information has been calculated at the MP2/6-311G(d,p) level. The energies along the minimum energy path have been further improved by single-point energy calculations at the G3MP2 level. In the β-abstraction channel, Jahn–Teller effect has been found. Changes of geometries, generalized normal-mode vibrational frequencies, and potential energies along the reaction paths for all channels have been discussed and compared. The calculated total rate constants match the available experimental values reasonable well over the measured temperature range. The results show the variational effect can be negligible and the small curvature tunneling contribution plays an important role for the calculation of the rate constant. At low temperature α-abstraction may be the major reaction channel, while β-abstraction will have more contribution to the whole reaction rate as the temperature increase. 相似文献
7.
8.
A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of the reaction of O(3P) with CF3NO (k2) as a function of temperature. Our results are described by the Arrhenius expression k2(T) = (4.54 ± 0.70) × 10?12 exp[(?560± 46)/T] cm3molecule?1 s?1 (243 K ? T ? 424 K); errors are 2σ and represent precision only. The O(3P) + CF3NO reaction is sufficiently rapid that CF3NO cannot be employed as a selective quencher for O2(a1Δg) in laboratory systems where O(3P) and O2(a1Δg) coexist, and where O(3P) kinetics are being investigated. © 1995 John Wiley & Sons, Inc. 相似文献
9.
The kinetics of the gas phase reaction between O(3P) atoms and N2O5 have been examined in a discharge-flow mass spectrometer at 4.5 torr (N2) total pressure. At O(3P) concentrations (5–10) × 1014 molecules/cm3, the decay of N2O5 was very small and only slightly greater than the data scatter. From these data, upper limits to the rate constant of this reaction was obtained at 223 and 300 K: k223 and k300 ? 3 × 10?16 cm3/molecule s. 相似文献
10.
The kinetics of the reactions of O(3P) and D atoms with cyclohexane have been investigated using fast-flow techniques. The rates of reaction were computed by monitoring changes in both atom and cyclohexane concentrations using electron spin resonance and mass spectrometric methods, respectively. The O(3P) + C6H12 reaction was studied over a temperature range of 344 to 513°K and we obtain a specific rate constant of (3.2±0.6) × 1014 exp (?4400±400/RT) cm3/mole˙sec for this reaction. The only reaction product detectable mass spectrometrically under flow conditions of excess oxygen atoms is formaldehyde. The D + C6H12 reaction was studied over a temperature range of 297 to 596°K. A specific rate constant of (4.1±1.0) × 1013 exp (?4000±300/RT) cm3/mole˙sec was obtained for this reaction. On the basis of the results obtained in these studies, the important primary process in both the O(3P) and D atom reactions is concluded to be abstraction of a hydrogen atom from the cyclohexane molecule. 相似文献
11.
Hattori S Schmidt JA Mahler DW Danielache SO Johnson MS Yoshida N 《The journal of physical chemistry. A》2012,116(14):3521-3526
The sulfur kinetic isotope effect (KIE) in the reaction of carbonyl sulfide (OCS) with O((3)P) was studied in relative rate experiments at 298 ± 2 K and 955 ± 10 mbar. The reaction was carried out in a photochemical reactor using long path FTIR detection, and data were analyzed using a nonlinear least-squares spectral fitting procedure with line parameters from the HITRAN database. The ratio of the rate of the reaction of OC(34)S relative to OC(32)S was found to be 0.9783 ± 0.0062 ((34)ε = (-21.7 ± 6.2)‰). The KIE was also calculated using quantum chemistry and classical transition state theory; at 300 K, the isotopic fractionation was found to be (34)ε = -14.8‰. The OCS sink reaction with O((3)P) cannot explain the large fractionation in (34)S, over +73‰, indicated by remote sensing data. In addition, (34)ε in OCS photolysis and OH oxidation are not larger than 10‰, indicating that, on the basis of isotopic analysis, OCS is an acceptable source of background stratospheric sulfate aerosol. 相似文献
12.
Reactions of oxygen atoms with ethylene, propene, and 2-butene were studied at room temperature under discharge flow conditions by resonance fluorescence spectroscopy of O and H atoms at pressures of 0.08 to 12 torr. The measured total rate constants of these reactions are K = (7.8 ± 0.6)·10?13cm3s?1,K = (4.3 ± 0.4) ± 10?12 cm3 s?1, K = (1.4 ± 0.4) · 10?11 cm3 s?1. The branching ratios of H atom elimination channels were measured for reactions of O atoms with ethylene and propene. No H-atom elimination was found for the reaction of O-atoms with 2-butene. A redistribution of reaction O + C2 channels with pressure was found. A mechanism of the O + C2 reaction was proposed and the possibility of its application to other olefins is discussed. On the basis of mechanism the pressure dependence of the total rate constant for reaction O + C2 was predicted and experimentally confirmed in the pressure range 0.08–1.46 torr. 相似文献
13.
Boulanouar Messaoudi 《国际化学动力学杂志》2020,52(9):589-598
The adiabatic mechanism of the reaction of trichloroethylene with O(3P), exploring the various O-atom addition and H-atom abstraction channels, is theoretically studied at the MP2/6-311++G(2d, 2p), MP2/aug-cc-pVTZ, CCSD/6-31G(d), G3, and CBS-QB3 levels of theory. From a kinetic point of view, the addition to the less substituted carbon atom of the double bond is more favorable than the addition to the more substituted carbon. Such O-atom addition reactions are favored over the one possible hydrogen-abstraction reaction. Calculations of the present study showed that five products are obtained: HCCl + C(O)Cl2 (P1), Cl + ClC(O)CHCl (P2), H + ClC(O)CCl2 (P3), Cl + HC(O)CCl2 (P4), and CH(O)Cl + CCl2 (P5). The products P2 and P4 are found to be the most favored ones. The kinetic calculations of rate constant in the range of 285–395 K are performed at the CBS-QB3 level of theory and are in conformity with the experimental outcomes. 相似文献
14.
The absolute rate constant of the reaction of O(3P) with toluene was measured by the microwave discharge-fast-flow method to obtain kT = 109.7–2.7/2.303RT l./mole·sec at 100–375°C. This was in good agreement with the rate constant calculated from the combination of the relative rate constant obtained by Jones and Cvetanovic with the recently determined absolute rate constants of the reaction of O(3P) + olefins. The extrapolation of the above Arrhenius plot to 27°C was also in good agreement with the absolute value of kT = 4.5 × 107 l./mole·sec determined recently by Atkinson and Pitts at 27°C. The rate constant of the reaction of chlorobenzene with O(3P), obtained at 238°C as 108.3 l./mole·sec by a competitive method, was smaller than kT by a factor of about two at the same temperature. 相似文献
15.
The reaction of O((3)P) with isobutene ((CH(3))(2)C=CH(2)) is investigated using the unrestricted second-order M?ller-Plesset perturbation (UMP2) and complete basis set CBS-4M level methods. The minimum energy crossing point (MECP) between the singlet and triplet potential energy surfaces is located using the Newton-Lagrange method, and it is shown that the MECP plays a key role. The calculational results indicate that the site selectivity of the addition of O((3)P) to either carbon atom of the double bond of isobutene is weak, and the major product channels are CH(2)C(O)CH(3) + CH(3,) cis-/trans-CH(3)CHCHO + CH(3), (CH(3))(2)CCO + H(2), and CH(3)C(CH(2))(2) + OH, among which (CH(3))(2)CCO + H(2) is predicted to be the energetically most favorable one. The complex multichannel reaction mechanisms are revealed, and the observations in several recent experiments could be rationalized on the basis of the present calculations. The formation mechanisms of butenols are also discussed. 相似文献
16.
The absolute second-order rate coefficient for the reaction, O(3P) + CH3OOH → products, was measured to be ??1 = (1.06 ± 0.26) × 10?14 cm3 molec?1 s?1 at 297 K, where the quoted error is 2σ including precision and estimated systematic errors. The possible presence of (CH3CH2)2O in our sample of CH3OOH leads to a large error in ??1 which reflects the relatively large uncertainty indicated. O(3P) was generated in excess CH3OOH by photolyzing a small amount of O3 at 532 nm, where CH3OOH does not photolyze. The rate of removal of O(3P) in the experiments was monitored by resonance fluorescence detection. The increased reactivity of O(3P) with CH3OOH relative to H2O2 is interpreted as due to H abstraction from the CH3 group. 相似文献
17.
R. Atkinson J. Arey S. M. Aschmann E. C. Tuazon 《Research on Chemical Intermediates》1994,20(3-5):385-394
The formation yields of 1,2-epoxy-2-methyl-3-butene and 1,2-epoxy-3-methyl-3-butene have been measured from the reaction of O3 with isoprene at room temperature and one atmosphere total pressure of N2 and air diluents, with and without cyclohexane to scavenge the OH radicals formed in this reaction system. In addition, a relative rate method was used to determine a rate constant for the gas-phase reaction of O3 with 1,2-epoxy-2-methyl-3-butene of (2.5 ± 0.7) x 10-18 cm3 molecules-1 s-1 at 296 ± 2 K. Our data show that the epoxide yields in N2 and air diluents are the same, with formation yields of 1,2-epoxy-2-methyl-3-butene of 0.028 ± 0.007 and of 1,2-epoxy-3-methyl-3-butene of 0.011 ± 0.004. These data further show that the epoxides arise from the primary O3 reaction with isoprene, and not via the formation of O(3P) atoms from the O3 - isoprene reaction followed by reaction of these O(3P) atoms with isoprene. 相似文献
18.
19.
J. Bennazha A. El‐Maadi Ali Boukhari Elizabeth M. Holt 《Acta Crystallographica. Section C, Structural Chemistry》2002,58(6):i76-i78
The crystal structures of two new diphosphates, sodium hexamanganese bis(diphosphate) triphosphate, NaMn6(P2O7)2(P3O10), and potassium hexacadmium bis(diphosphate) triphosphate, KCd6(P2O7)2(P3O10), confirm the rigidity of the M6(P2O7)2(P3O10) matrix (M is Mn or Cd) and the relatively fixed dimensions of the tunnels extending in the a direction of the unit cell. The compounds are isomorphous; the P2O74? anion and the alkali metal cations lie on mirror planes. Bond‐valence analysis of the bonding details of the atoms found within the tunnels permits a prediction of the conductivity. 相似文献
20.
The reactions have been studied in a discharge-flow system. Kinetic studies were made using resonance fluorescence for the measurement of atom concentrations. Based on the rates of atom loss, the following upper limits were obtained for the rate constants: Observed reaction in the H? HNO3 system is at least partially due to an autocatalytic chain removal of both reactants. Diagnostic tests have suggested that OH, NO2, and NO3 are the chain carriers. 相似文献