首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The energetics, structures, stabilities and reactivities of[CnH2]2+ ions have been investigated using computational methods and experimental mass spectrometric techniques. Spontaneous decompositions of [CnH2]2+ into [CnH]+ + H+ products, observed for ions with odd-n values, have been explained by invoking the formation of excited triplet states. Even-n [CnH]+ ions possess triplet ground states with low-lying excited states, whereas odd-n ions have triplet states with energies several eV above ground singlet states. Radiationless transitions of vibrationally excited long-lived triplet state ions into singlet state continua are suggested as possible mechanisms for spontaneous deprotonation processes of odd-n [CnH2]2+ ions. Evidence for these long-lived excited states has been obtained in bimolecular single electron transfer reactions.  相似文献   

2.
Fast atom bombardment-produced [M + Na]+ ions of tristearoylglycerol and [M ? H]? ions of stearic or nervonic acid undergo charge-remote fragmentations (CRFs) to produce one series of product ions reflecting C n H2n+2 losses, whereas electrospray ionization-produced ions fragment to give two series of product ions reflecting C n H2n+2 and C n H2n+1 losses. These results and those from previous studies show that the mechanisms and energetics of CRFs are complex and unsettled. We demonstrate that several pathways are simultaneously involved in CRFs, and the preference for certain pathways (by C n H2n+1 and C n H2n+2 losses) is determined by the internal energy of the compound itself and the ionization and activation energies that are applied to it.  相似文献   

3.
The molecular ions of isomeric octanes retain their structural identity, while their alkyl fragments [CnH2n+1]+ (n = 3 to 7) isomerise to common structures prior to decomposition. Structures for [C6H13]+ and [C7H15]+ ions are proposed.  相似文献   

4.
The 70 eV electron ionization mass spectra of polycyclic aromatic compounds are characterized by the presence of relatively stable multiply charged molecular ions [M]n+ (n=2–4). When generated from the compounds benzene, napthalene, anthracene, phenanthrene, 2,3-benzanthracene, 1,2-benzanthracene, chrysene, 9,10-benzophenanthrene and pyrene, the relative abundances of the multiply charged ions increase dramatically with the number of rings. These compounds form multiply charged molecular ions (n=2, 3) which undergo unimolecular decompositions indicative of considerable ionic rearrangement. The main charge separation processes observed here [M]2+→m1++m2+, [M]3+˙→m3++m→+m42+) involve, in almost every case, one or more of the products [CH3]+, [C2H3]+˙ and [C3H3]+. This suggests the existence of preferred structures amongst the metastable parent ions. Information on the relative importance of the various fragmentation pathways is presented here along with translational energy release data. Some tentative structural information about the metastable ions has been inferred from the translational energy release on the assumption that the released energy is due primarily to coulombic repulsion within the transition state structure. For the triply charged ions these interpretations have necessitated the use of a coulombic repulsion model which takes account of an extra charge. Vertical ionization energies for the process [M]n++G→[M](n+1)+G+e? (charge stripping) have also been determined where possible for n=1 and 2 and the results from these experiments allow the derivation of simple empirical equations which relate successive ionization energies for the formation of [M]2+ and [M]3+˙ to the appearance energy of [M]+˙.  相似文献   

5.
Chemical ionization mass spectra of several ethers obtained with He/(CH3)4Si mixtures as the reagent gases contain abundant [M + 73]+ adduct ions which identify the relative molecular mass. For the di-n-alkyl ethers, these [M + 73]+ ions are formed by sample ion/sample molecule reactions of the fragment ions, [M + 73 ? CnH2n]+ and [M + 73 ? 2CnH2n]+. Small amounts of [M + H]+ ions are also formed, predominantly by proton transfer reactions of the [M + 73 ? 2CnH2n]+ or [(CH3)3SiOH2]+ ions with the ethers. The di-s-alkyl ethers give no [M + 73] + ions, but do give [M + H]+ ions, which allow the determination of the relative molecular mass. These [M + H]+ ions result primarily from proton transfer reactions from the dominant fragment ion, [(CH3)3SiOH2]+ with the ether. Methyl phenyl ether gives only [M + 73]+ adduct ions, by a bimolecular addition of the trimethylsilyl ion to the ether, not by the two-step process found for the di-n-alkyl ethers. Ethyl phenyl ether gives [M + 73]+ by both the two-step process and the bimolecular addition. Although the mass spectra of the alkyl etherr are temperature-dependent, the sensitivities of the di-alkyl ethers and ethyl phenyl ether are independent of temperature. However, the sensitivity for methyl phenyl ether decreases significantly with increasing temperature.  相似文献   

6.
The 12.1 eV, 75°C electron impact mass spectra of 24 urethanes, RNHCO2C2H5 [R ? H, C2H2n +1 (n = 1-8), CH2?CHCH2, Ph, PhCH2 and PhCH2CH2], and seven symmetrically disubstituted urethanes R2NCO2C2H5 (R ? Cn H2n + 1 (n = 1?4)) are reported and discussed. All 31 spectra show appreciable molecular ion peaks. For n ?Cn H2n +1 NHCO2C2H5, M+ ˙ usually is the most abundant ion in the spectrum. A peak at m/z 102 of comparable intensity also is present; this corresponds to formal cleavage of the bond connecting the α- and β-carbon atoms in the N-alkyl group, though it is unlikely that the daughter ion has the structure [CH2?NHCO2C2H5]+. In the RNHCO2C2H5 series, branching at the α-carbon atom enhances the relative abundance of the ion arising by notional α-cleavage at the expense of that of M+ ˙. Formal cleavage of the bond between β- and γ-carbon atoms occurs to some extent for [RNHCO2C2H5]+˙ ions; this reaction provides information on the degree of branching at the β-carbon, especially if metastable molecular ions are considered. The higher n-CnH2n +1NHCO2C2H5 (n = 5?8) urethanes exhibit two other significant ions in their mass spectra. First, there is a peak at [M ? C2H5]+. Secondly, a peak is present at m/z 90; the most plausible structure for this ion is [H2N(HO)COC2H5]+, arising by double hydrogen transfer from the alkyl group and expulsion of a [CnH2n ?1]˙ radical. Ions originating from secondary decomposition of the primary ionic species are generally of only very low abundance in these spectra.  相似文献   

7.
Six alkyl alcohols were studied using thermospray mass Spectrometry. Whereas the dominant ion in the spectrum up to a repeller potential of 120 V was [M + NH4]+, above that potential [M + H]+ and fragment ions appeared. The fragments observed were largely due to hydrogen release from alkyl ions ([CnH2n+1]+ – H2 → [CnH2n-1]+) and loss of water or some other stable molecule from the same species. The results are compared with those from ionization of the same alcohols under electron impact and photoionization conditions and with results obtained for methanol under thermospray conditions.  相似文献   

8.
We report the first positive chemical ionization (PCI) fragmentation mechanisms of phthalates using triple‐quadrupole mass spectrometry and ab initio computational studies using density functional theories (DFT). Methane PCI spectra showed abundant [M + H]+, together with [M + C2H5]+ and [M + C3H5]+. Fragmentation of [M + H]+, [M + C2H5]+ and [M + C3H5]+ involved characteristic ions at m/z 149, 177 and 189, assigned as protonated phthalic anhydride and an adduct of phthalic anhydride with C2H5+ and C3H5+, respectively. Fragmentation of these ions provided more structural information from the PCI spectra. A multi‐pathway fragmentation was proposed for these ions leading to the protonated phthalic anhydride. DFT methods were used to calculate relative free energies and to determine structures of intermediate ions for these pathways. The first step of the fragmentation of [M + C2H5]+ and [M + C3H5]+ is the elimination of [R? H] from an ester group. The second ester group undergoes either a McLafferty rearrangement route or a neutral loss elimination of ROH. DFT calculations (B3LYP, B3PW91 and BPW91) using 6‐311G(d,p) basis sets showed that McLafferty rearrangement of dibutyl, di(‐n‐octyl) and di(2‐ethyl‐n‐hexyl) phthalates is an energetically more favorable pathway than loss of an alcohol moiety. Prominent ions in these pathways were confirmed with deuterium labeled phthalates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
It is shown that alkyl radical species present in CH4 or iso-C4H10 plasma can react with substrate molecules to give [M+CnH2n] species. These species become evident especially in negative chemical ionization as [M+CnH2n] and, less obviously, in positive chemical ionization as [M+CnH2n+1]+ ions which, for example in natural products chemistry, may be mistaken for a series of homologous compounds present in the sample.  相似文献   

10.
Negative chemical ionization mass spectrometry is used as a probe to examine reactions between hydrocarbon radicals and metal complexes in the gas phase. The methane negative chemical ionization mass spectra of 27 complexes of cobalt(II ), nickel(II ) and copper(II ) in the presence of O4, O2N2 and N4 donor atom sets are characterized by two dominant series of adduct ions of the form [M + CnH2n]? and [M + CnH2n+1]? at m/z values above the molecular ion, [M]?. Insertion of the CH radical into the ligand followed by radical/radical recombination and electron capture is proposed as the major mechanism leading to the formation of [M + CnH2n]? adduct ions. A second pathway involves ligand substitution by CnH2n+1 radicals concomitant with H elimination and electron capture. Oxidative addition at the metal followed by ionization is suggested as the principal pathway for the formation of [M + CnH2n+1]? adduct ions.  相似文献   

11.
Oxirane chemical ionization (CI) gives numerous ions, including C2H3O+ and C2H5O+. These ions react with organic molecules through various specific ion–molecule reactions such as hydride abstraction, protonation, additions or cycloadditions. Oxirane CI allows discrimination between unsaturated compounds with [M + 43]+ and [M + 57]+ adduct ions and heteroatom functions with [M + 45]+ adduct ion. All are diagnostic ions. Oxirane CI permits selectivity during the ionization process of a mixture and discrimination of isomers.  相似文献   

12.
Homoadamantane derivatives can be divided into two groups according to their mass spectra. To the first group belong compounds with electron attracting substituents (COOH, CI, COOCH3, Br); compounds with electron releasing substituents (OCH3, OH, NH3, NHCOCH3) constitute the second group. The most characteristic feature of the first group compounds is the splitting off of the substituent. The hydrocarbon fragment [C11H17]+ thus formed then loses olefin molecules with the formation of corresponding ionic species C11?nH17?2n. The 3-substituted compounds of this group undergo thermal Wagner-Meerwein type rearrangements into adamantane derivatives, resulting in the [C10H15]+ (m/e 135) ion formation; this is the main difference between 1- and 3-substituted homoadamantanes. The series of [CnH2n?6X]+ ions (where X = OCH3, OH, NH2, NHCOCH3, n = 6 to 10) are characteristic of the mass spectra of the second group compounds, the ion [C6H6X]+, [M ? C5H11]+ being the most abundant. The intensity ratio of [M ? C5H11]+ to [M ? C4H9]+ ions is 10:1 for 1-substituted and 3:1 for 3-substituted compounds of this group, allowing the location of the substituent. Some individual features of the spectra are also reported.  相似文献   

13.
[CnH2n?3]+ and [CnH2n?4]+·(n = 7, 8) ions have been generated in the mass spectrometer from CnH2n?3 Br (n = 7, 8) precursors and from two steroids. The relative abundances of competing ‘metastable transitionss’ indicate (partial) isomerization to a common structure (or mixture of structures) prior to decomposition in most examples of all four types of ions. In contrast, [C8H10O]+· and [C8H12O]+· ions, generated from different sources as molecular ions and by fragmentation of steroids, do not decompose through common-intermediates.  相似文献   

14.
The losses of methyl and ethyl through the intermediacy of the [2-butanone]+˙ ion are shown to be the dominant metastable decomposition of 14 of 19 [C4H8O]+˙ ions examined. The ions that decompose via the [2-butanone]+˙ structure include ionized aldehydes, unsaturated and cyclic alcohols and enolic ions. [Cyclic ether]+˙ [cyclopropylmethanol]+˙ and [2-methyl-1-propen-1-ol]+˙ ions do not decompose through ionized 2-butanone. The rearrangements of various [C4H8O]+˙ ions the the 2-butanone ion were investigated by means of deuterium labeling. Those pathways involve up to eight steps. Ions with the oxygen on the end carbon rearrange to a common structure or mixture of structures. Those ions which ultimately rearrange to the [2-butanone]+˙ ion then undergo oxygen shifts from the terminal to the second and third carbons at about equal rates. However, this oxygen shift does not precede the losses of water and ethylene. Losses of water and ethylene were unimportant for ions with the oxygen initially on the second carbon. Ionized n-butanal and cyclobutanol, but not other [C4H8O]+˙ ions, undergo reversible hydrogen exchange between the oxygen and the terminal carbon. Rearrangement of ionized n-butanal to the [cyclobutanol]+˙ ion is postulated.  相似文献   

15.
MINDO/3 calculations for singlet and triplet doubly charged benzene [C6H6]2+ are in satisfactory agreement with the experimentally determined values of the vertical double ionization energy of benzene; calculations for straight chain isomeric structures are consistent with the observed kinetic energy release on fragmentation to [C5H3]+ and [CH3]+. Symmetrical doubly charged benzene ions relax to a less symmetrical cyclic structure having sufficient internal energy to fragment by ring opening and hydrogen transfer towards the ends of the carbon chain. Fragmentation of [CH3C4CH3]2+ to [CH3C4]+ and [CH3]+ is a relatively high energy process (A), whereas both (B): [CH3CHC3CH2]2+ to [CHC3CH2]+ and [CH3]+ and (C): [CH3CHCCHCCH]2+ to [CHCCHCCH]+ and [CH3]+ may be exothermic processes from doubly charged benzene. Furthermore, the calculated energy for the reverse of process (A) is less than the experimentally observed kinetic energy released, whereas larger energies for the reverse of processes B and C are predicted. Heats of formation of homologous series [HCn]+, [CH3Cn]+, [CH2Cn?2CH]+, [CH3Cn?2CH2]+ and [CH2?CHCn?3CH2]+ with 1 < n < 6 are calculated to aid prediction of the most stable products of fragmentation of doubly charged cations. The homologous series [CH2Cn?2CH]+ is relatively stable and may account for ready fragmentation of doubly charged ions to [CnH3]+; alternatively the symmetrical [C5H3]+ ion [CHCCHCCH]+ may be formed. Dicoordinate carbon chains appear to be important stabilizing features for both cations and dications.  相似文献   

16.
The main fragmentation of the compounds MX3-noxn (oxH=8-quinolinol. n = 3; M=AL, Ga, In, Sc, Cr or Fe. n = 2; M=In or Fe; X=Cl or Br. InIox2. n = 1; M=AL, In or Fe; X= Cl or Br) involves loss of X and intact ox. radicals. The comparative abundances of the fragments are primarily related to the common oxidation states of the metals. For example, all the Mox3 compounds show the ions [Mox3]+ and [Mox2]+. The ions [Mox]+ and [M]+ are present when M=Ga, In, Cr or Fe but for the elements with only one oxidation state (Al or Sc) [M]+ is absent and [Mox]+ has only very low abundance. When M= Cr or Fe metal-containing ions arising from loss of species such as CO, H2O, HX, C2H2, H and OH by fragmentation of the ox ligand are also present; this behaviour is rationalised in terms of the ability of these metals to undergo a unit change in oxidation state. When n=1 the ions [MXox2]+ and [Mox2]+ and when n= 2 the ions [MX2ox]+ and [Mox3]+ are present; these ions arise by ionization and fragmentation of species formed by redistribution reactions in the mass spectrometer.  相似文献   

17.
The mechanism of propene loss from protonated phenyl n-propyl ether and a series of mono-, di-, and trimethylphenyl n-propyl ethers has been examined by chemical ionization (CI) mass spectrometry in combination with tandem mass spectrometry experiments. The role of initial proton transfer to the oxygen atom and the aromatic ring, respectively, has been probed with the use of deuterated CI reagents, D2O, CD3OD, and CD3CN (given in order of increasing proton affinity), in combination with deuterium labeling of the β position of the n-propyl group or the phenyl ring. The metastable [M + D]+ ions of phenyl n-propyl ether—formed with D2O as the CI reagent—eliminate C3H5D and C3H6 in a ratio of 10:90, which indicates that the added deuteron is incorporated to a minor extent in the expelled neutral species. In the experiments with CD3OD as the CI reagent, the ratio between the losses of C3H5D and C3H6 from the metastable [M + D]+ ions of phenyl n-propyl ether is 18:82, whereas the ratio becomes 27:73 with CD3CN as the reagent. A similar trend in the tendency to expel a propene molecule that contains the added deuteron is observed for the metastable [M + D]+ ions of phenyl n-propyl ether labeled at the β position of the alkyl group. Incorporation of a hydrogen atom that originates from the aromatic ring in the expelled propene molecule is of negligible importance as revealed by the minor loss of C3H5D from the metastable [M + H]+ ions of C6D5OCH2CH2CH3 irrespective of whether H2O, CH3OH, or CH3CN is the CI reagent. The combined results for the [M + D]+ ions of phenyl n-propyl ether and deuterium-labeled analogs are suggested to be in line with a model that assumes that propene loss occurs not only from species formed by deuteron transfer to the oxygen atom, but also from ions generated by deuteron transfer to the ring. This is substantiated by the results for the methyl-substituted ethers, which reveal that the position as well as the number of methyl groups bonded to the ring exert a marked effect on the relative importances of the losses of C3H5D and C3H6 from the metastable [M + D]+ ions of the unlabeled methyl-substituted species.  相似文献   

18.
In contrast to an earlier report,1 the collisonally induced dissociation of protonated 2-propanol and t-butyl alcohol yields spectra that are indistinguishable from those of the corresponding [C3H7/H2O]+ and [C4H9/H2O]+ ions generated by the (formal) gas phase addition reactions in a high pressure ion source of [s-C3H7]+ and [t-C4H9]+ ions with the n-donor H2O. Similarly, [s-C3H7/CH3OH]+ ions generated by both gas phase protonation of n- and s-propyl methyl ethers and addition reactions of [C3H7]+ to CH3OH display mode-of-generation-independent collisionally induced dissociation characteristics. However, analysis of the unimolecular dissociation (loss of propene) of the [C3H7/CH3OH]+ system, including a number of its deuterium, 13C- and 18O-labelled isotopomers, supports the idea that prior to unimolecular dissociation, covalently bound [C3H7- O(H)CH3]+ ions intercovert with hydrogen-bridged adduct ions, analogous to the behaviour of the distonic ethene-, propene- and ketene-H2O radical cations.  相似文献   

19.
Collisionally activated decomposition (CA) spectra of [C4H8O]+˙ ions and the products of their metastable decompositions are used to refine a previously presented picture of the reactions of [C4H8O]+˙ ions. Metastable [C4H8O]+˙ isomers predominantly rearrange to the 2-butanone ion and decompose by loss of methyl and ethyl, although up to 38% of the methyl losses take place by other pathways to form \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{2}} = {\rm{CHCH = }}\mathop {\rm{O}}\limits^{\rm{ + }} {\rm{H}}{\rm{.}} $\end{document} . The CA spectra of many of the [C4H8O]+˙ ions with the oxygen on the first carbon are very similar, consistent with those ions isomerizing largely to common structures before or after collision. However, several of these ions have unique CA spectra, so they must remain structurally distinct from the majority of the [C4H8O]+˙ ions below energies required for decomposition. The CA spectra of ions with the oxygen on the second carbon are distinct from those of ions with the oxygen on the first carbon, so there is limited interconversion of the non-decomposing forms of the two types of ions. A potential energy diagram for the reactions of metastable [C4H8O]+˙ ions is constructed from appearance energy measurements. As would be expected, the relative importances of most of the [C4H8O]+˙ isomerizations seem to be inversely related to the activation energies for those processes. Some parallels between the isomerizations of [C4H8O]+˙ ions and those of related ions are pointed out.  相似文献   

20.
The gas-phase ion chemistry of protonated O,O-diethyl O-aryl phosphorothionates was studied with tandem mass spectrometric and ab initio theoretical methods. Collision-activated dissociation (CAD) experiments were performed for the [M+H]+ ions on a triple quadrupole mass spectrometer. Various amounts of internal energy were deposited into the ions upon CAD by variation of the collision energy and collision gas pressure. In addition to isobutane, deuterated isobutane C4D10 also was used as reagent gas in chemical ionization. The daughter ions [M+H?C2H4]+ and [M+H?2C2H4]+ dominate the CAD spectra. These fragments arise via various pathways, each of which involves γ-proton migration. Formation of the terminal ions [M+H?2C2H4?H2O]+, [M+H?2C2H4?H2S]+, [ZPhOH2]+, [ZPhSH2]+, and [ZPhS]+ [Z = substituent(s) on the benzene ring] suggests that (1) the fragmenting [M+H]+ ions of O,O-diethyl O-aryl phosphorothionates have protons attached on the oxygen of an ethoxy group and on the oxygen of the phenoxy group; (2) thiono-thiolo rearrangement by aryl migration to sulfur occurs; (3) the fragmenting rear-ranged [M+H]+ ions have protons attached on the oxygen of an ethoxy group and on the sulfur of the thiophenoxy group. To get additional support for our interpretation of the mass spectrometric results, some characteristics of three protomers of O,O-diethyl O-phenyl phosphorothionate were investigated by carrying out ab initio molecular orbital calculations at the RHF/3–21G* level of theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号