首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Graft copolymerization of N-carboxy anhydride of β-benzyl-L -aspartate onto copoly(L -lysine γ-methyl-L -glutamate) was carried out in N,N-dimethylformaide which contained 3 v/v% of dimethyl sulfoxide to obtain multi-Nε-poly(β-benzyl-L -aspartyl)copoly(L -lysine γ-methyl-L gluta mate). The degree of polymerization of the branch chain attained was much influenced by the interval of the grafting sites of the copoly(L -lysine γ-methyl-L -glutamate). The solvent-induced two-step conformational transition of the multichain copoly(α-amino acid) was observed in the chloroform-dichloroacetic acid system at 25°C by the ORD technique. The stability of the α-helical conformation of the backbone polymer chain was decreased by the presence of poly(β-benzyl-L -aspartyl) branch chains that could form unstable α-helical conformations of opposite spirals.  相似文献   

2.
Polymerization of the N-carboxy anhydride of N?-carbobenzyloxy-L -lysine in the presence of multifunctional polymeric initiator, copoly(L -lysine γ-methyl-L -glutamate) was studied in N,N-dimethylformamide containing 3% (v/v) of dimethyl sulfoxide. Multichain copoly(α-amino acid), i.e., multi-N?-poly(N?-carbobenzyloxy-L -lysine)copoly(L -lysine γ-methyl-L -glutamate), was obtained with linear poly(N?-carbobenzyloxy-L -lysine) as by-product that could be removed by reprecipitation as was evidenced by gel-permeation chromatography. The degree of polymerization of the branch polymer chains estimated by the osmometric molecular weight determination and amino acid analysis was between 20 and 60, which decreased with increasing lysine content of the polymeric initiator. The stability of α-helical conformation of the multichain copoly(α-amino acid) was studied in the chloroform–dichloroacetic acid system at 25°C by the ORD technique. The α-helical conformation of poly(N?-carbobenzyloxy-L -lysine) branches was less stable than those of linear poly(N?-carbobenzyloxy-L -lysine) and the core molecular chains of the multichain copoly(α-amino acid).  相似文献   

3.
A number of multi-N?-poly(γ-benzyl-L -glutamyl)copoly(L -lysine γ-methyl-L -glutamate)s with branches having various degrees of polymerization and with various intervals of the grafting sites in the core molecule were prepared in N,N-dimethylformamide containing dimethyl sulfoxide by the reaction of N-carboxy anhydride of γ-benzyl L -glutamate with random copoly(L -lysine γ-methyl-L -glutamate)s of different composition with various anhydride-initiator ratios. The relationship between the intrinsic viscosity measured in a coil solvent, dichloroacetic acid (DCA), and the number-average molecular weight determined by osmometry was found to be expressed by the Mark–Houwink–Sakurada equation for the multichain copoly(α-amino acid)s which were made from the same polymeric initiator. The observed α values of the multichain copoly(α-amino acid)s in the equation were lower than that of linear poly(γ-benzyl-L -glutamate). The solvent induced helix–coil transition of the multichain copolymer was investigated in the chloroform?DCA system by the ORD technique. Two kinds of transition regions were clearly distinguished: The α-helices of the core molecules underwent the transition at lower DCA concentration and those of the branch chains at higher DCA concentration. The reduced viscosity of the multichain copoly-(α-amino acid) increased slightly between the two transition regions, in contrast to the large decrease in the reduced viscosity of linear poly(γ-benzyl-L -glutamate) during the helix–coil transition.  相似文献   

4.
The kinetics of the solid-state polymerization of the N-carboxy anhydrides (NCA) of the L - and racemic forms of γ-benzyl glutamate (BG), γ-methyl glutamate (MG), and ?-carbobenzoxylysine (CL) were studied as a function of temperature and aqueous vapor pressure. The reaction of the L -forms of BG and MG was characterized by an induction period, while the CL derivative reached its maximum polymerization rate at the outset of the reaction. Water vapor had only a minor effect in accelerating the reaction and reducing the chain length of the polypeptides formed. The racemic monomers were found to have different crystal structures from those of the L -isomers and the racemic MG and CL derivatives polymerized much more slowly than the corresponding optically active crystals. All polymers gave diffuse x-ray diffraction patterns. Infrared spectra of the L -polypeptides showed that they were largely in the α-helical form. The polymer derived from the racemic BG–NCA had a content of α-helical material which suggested that it consisted of polypeptides with long blocks of D and L residues.  相似文献   

5.
Various kinds of NCA's were polymerized in dimethyl sulfoxide (DMSO). DL -Alanine NCA polymerized at a fast rate without initiator, the rate being represented by Rp1 = k[M]1/2. When the polymerization was carried out in chloroform in the presence of DMSO, the rate was represented by the equation, Rp2 = K2[M][DMSO]1/2. Glycine NCA and DL -α-amino-n-butyric acid NCA also polymerized at a fast rate in DMSO without initiator. On the other hand, N-methylglycine NCA, DL - and L -valine NCA and DL - and L -leucine NCA did not polymerize in DMSO without initiator.  相似文献   

6.
This contribution describes the synthesis and ring‐opening (co)polymerization of several L ‐lysine N‐carboxyanhydrides (NCAs) that contain labile protective groups at the ?‐NH2 position. Four of the following L ‐lysine NCAs were investigated: N?‐trifluoroacetyl‐L ‐lysine N‐carboxyanhydride, N?‐(tert‐butoxycarbonyl)‐L ‐lysine N‐carboxyanhydride, N?‐(9‐fluorenylmethoxycarbonyl)‐L ‐lysine N‐carboxyanhydride, and N?‐(6‐nitroveratryloxycarbonyl)‐L ‐lysine N‐carboxyanhydride. In contrast to the harsh conditions that are required for acidolysis of benzyl carbamate moieties, which are usually used to protect the ?‐NH2 position of L ‐lysine during NCA polymerization, the protective groups of the L ‐lysine NCAs presented here can be removed under mildly acidic or basic conditions or by photolysis. As a consequence, these monomers may allow access to novel peptide hybrid materials that cannot be prepared from ?‐benzyloxycarbonyl‐L ‐lysine N‐carboxyanhydride (Z‐Lys NCA) because of side reactions that accompany the removal of the Z groups. By copolymerization of these L ‐lysine NCAs with labile protective groups, either with each other or with γ‐benzyl‐L ‐glutamate N‐carboxyanhydride or Z‐Lys NCA, orthogonally side‐chain‐protected copolypeptides with number‐average degrees of polymerization ≤20 were obtained. Such copolypeptides, which contain different side‐chain protective groups that can be removed independently, are interesting for the synthesis of complex polypeptide architectures or can be used as scaffolds for the preparation of synthetic antigens or protein mimetics. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1167–1187, 2003  相似文献   

7.
4-Isobutyloxazolidinedione, L -leucine N-carboxy anhydride, was polymerized to produce high molecular weight polymer with triethylamine in n-hexane which is not a solvent for the N-carboxy anhydride and poly-L -leucine. It was found that as the crystal size became smaller, the total surface area was increased, the initial rate of polymerization was increased, and inherent viscosity of the formed polymer was decreased.  相似文献   

8.
Poly(DL-lactic acid-co-l-lysine) (PLAL) random copolymer was obtained by copolymerization of amino acid-N-carboxy anhydride with lactic acid anhydrosulphite in the presence of an initiator. The structures of the poly(DL-lactic acid-co-ε-cbz-l-lysine) and PLAL were characterized by IR, 1H-NMR, 13C-NMR and elemental analysis. Different initiators were used to initiate the ring-opening copolymerization. Good agreement between calculated and actual compositions was observed in most cases when using dibutylzinc as initiator. The solubility of PLAL was discussed.  相似文献   

9.
The polymerization of L - and DL -alanine NCA initiated with n-butylamine was carried out in acetonitrile which is a nonsolvent for polypeptide. The initiation reaction was completed within 60 min.; there was about 10% of conversion of monomer. The number-average degree of polymerization of the polymer obtained increased with the reaction period, and it was found to agree with value of W/I, where W is the weight of the monomer consumed by the polymerization and I is the weight of the initiator used. The initiation reaction of the polymerization was concluded as an attack of n-butylamine on the C5 carbonyl carbon of NCA. The initiation, was followed by a propagation reaction, in which there was attack by an amino endgroup of the polymer on the C5 carbonyl carbon of NCA. The rate of polymerization was observed by measuring the CO2 evolved, and the activation energy was estimated as follows: 6.66 kcal./mole above 30°C. and 1.83 kcal./mole below 30°C. for L -alanine NCA; 15.43 kcal./mole above 30°C., 2.77 kcal./mole below 30°C. for DL -alanine NCA. The activation entropy was about ?43 cal./mole-°K. above 30°C. and ?59 cal./mole-°K. below 30°C. for L -alanine NCA; it was about ?14 cal./mole-°K. above 30°C. and ?56 cal./mole-°K. below 30°C. for DL -alanine NCA. From the polymerization parameters, x-ray diffraction diagrams, infrared spectra, and solubility in water of the polymer, the poly-DL -alanine obtained here at a low temperature was assumed to have a block copolymer structure rather than being a random copolymer of D - and L -alanine.  相似文献   

10.
The copolymerization of ethylene with maleic anhydride was carried out with γ-radiation and a radical initiator, i.e., 2,2′-azobisisobutyronitrile and diisopropyl peroxydicarbonate under pressure at various reaction conditions. The homopolymerization of neither monomer was observed in this system. In the γ-ray-initiated copolymerization the G value (polymerized monomer molecules per 100 e.v.) was shown to be between 103 and 104. It was found that the dose rate exponent of the rate is approximately unity, and the rate is proportional to the amount of ethylene monomer. Apparent activation energies of 1.8 and 27.5 kcal./mole were obtained for γ-ray-initiated and AIBN-initiated copolymerization, respectively. Since the composition of copolymer is independent of monomer molar ratio and the molar ratio of ethylene to maleic anhydride in the polymer is approximately unity, the monomer reactivity ratios were obtained as rE ? 0 and rM ? 0 for γ-ray-initiated polymerization at 40°C. Alternating copolymerization was, therefore, concluded to occur. Infrared analysis of the copolymer is almost consistent with this. The copolymer in the solid state is amorphous. It is soluble in water, cyclohexane, and dimethylformamide and insoluble in lower alcohols, ether, and aromatic hydrocarbons. The aqueous solution of polymer gave a strong acid.  相似文献   

11.
The polymerizability of N-carboxy–amino acid anhydrides (NCAs) of L -leucine and L -alanine was examined in the solid state and in solution. L -leucine NCA shows much higher reactivity in the solid state (when immersed in hexane) than in solution (in acetonitrile), but the opposite is true for L -alanine NCA. However, the two NCAs give similar values of apparent activation energy in each polymerization system. Rather high-molecular-weight polypeptides were obtained in the polymerization of L -leucine NCA in the solid state compared with those obtained in solution, while the molecular weight of polymers obtained from L -alanine NCA was higher in solution than in the solid state. IR spectra showed that α helices form mainly in the polymerization of both L -leucine NCA and L -alanine NCA in the solid state; a small amount of the β structure forms in the latter polymerization. X-ray diffraction and electron microscopy revealed that L -leucine NCA polymerizes predominantly along the c axis in the crystal, while the polymer chains grow in random directions in the crystal of L -alanine NCA. The difference can be explained by the molecular arrangement in the crystal. There are two requirements for high reactivity in the solid state: the five-membered rings of the monomer must form a layer structure and the polymer must occupy nearly the same space as the reacting monomer.  相似文献   

12.
α-Methylene-N-methylpyrrolidone (α-MMP) was synthesized and homopolymerized by bulk and solution methods. The poly(α-MMP) is readily soluble in water, methanol, methylene chloride, and dipolar aprotic solvents at room temperature. Thermogravimetric analysis of poly(α-MMP) showed a 10% weight loss at 330°C in air. The kinetics of α-MMP homopolymerization and copolymerization were investigated in acetonitrile, using azobisisobutyronitrile (AIBN) as an initiator. The rate of polymerization Rp could be expresed by Rp = k[AIBN]0.49[α-MMP]1.3. The overall activation energy was calculated to be 84.1 kj/mol. The relative reactivity ratios of α-MMP (M2) copolymerization with methyl methacrylate (r1 = 0.59, r2 = 0.26) in acetonitrile were obtained. Applying the Q-e scheme led to Q = 2.18 and e = 1.77. These Q and e values are larger than those for acrylamide derivatives.  相似文献   

13.
Poly[S-(2–9′-acridinylethyl)-L -cysteine] ( 5 ) was synthesized by the N-carboxy anhydride procedure. It was converted to the trifluoroacetic acid salt ( 6 ), which was treated with LiTCNQ in methanol to give the TCNQ anion radical salt ( 7 ). 7 showed electrical conductivity of 10?8 S/cm at 295 K.  相似文献   

14.
The copolymerization of 4-hydroxy-4′-vinylbiphenyl (HVB) with α-chloromaleic anhydride (CMAn) was investigated in THF, 1,4-dioxane, and acetonitrile. The formation of the 1:1 charge transfer complex between HVB and CMAn was confirmed spectroscopically, and the corresponding equilibrium constant (Keq) was determined as follows: Keq = 0.19, 0.11, and 0.058 mol/L in THF, 1,4-dioxane, and CH3CN, respectively. The copolymer composition is affected by the solvent, i.e., the content of HVB in the copolymer obtained in THF or 1,4-dioxane is lower than 50 mol % whereas the copolymer obtained in CH3CN has excess of HVB units. The maximum rate of copolymerization was observed at a 1:1 initial comonomer mole ratio, irrespective of the solvent polarity. Plots of Rp/[HVB] vs. [HVB] gave a straight line with a slope and an intercept for the copolymerization in THF whereas a straight line in CH3CN has no slope. On the basis of these results and 13C-NMR spectra of the copolymers, the mechanism of the predominant formation of alternating copolymers is discussed.  相似文献   

15.
The polymerization of α-amino acid N-carboxy anhydrides (NCAs) initiated by 4-aminoethylimidazole (histamine) was studied in order to synthesize poly(amino acids) containing an imidazole nucleus at the end of polymer chain. On the basis of the kinetical measurements, it was found that the rate of polymerization is proportional to the first order in both NCA and initiator concentrations and that the initiation reaction is predominantly caused by the primary amine with the highest basicity in a histamine molecule. Binding of the histamine fragment to the end of polymer chain was confirmed by elementary analysis, nuclear magnetic resonance spectroscopy, and measuring the number-average molecular weight of the resulting polymers. It was thus possible to prepare poly(amino acids) with a pendant histamine. In addition, the lowering of the number-average degree of polymerization of the polymers prepared was observed under the condition that the initial molar ratio of NCA to histamine was larger. It was caused by the reinitiation of polymerization by the imidazole nucleus at the chain end.  相似文献   

16.
Copolymerization of NCA's was undertaken in a heterogeneous system in acetonitrile, which is not a solvent of the polypeptides. The reactivity ratio was calculated by using the Lewis-Mayo equation. Further, the conversion rate in the copolymerization and the configuration of the copolymer produced were compared with those of the copolymerization in the homogeneous system in nitrobenzene, in which the copolypeptides are swollen. The rate of copolymerization in acetonitrile was between the rates of polymerization of the individual monomers. It has been reported that the configuration of the copolymer obtained in dimethylformamide, in which the copolypeptides are swollen, is of the block type. On the other hand, many polypeptides obtained in acetonitrile, which is not a solvent of the copolypeptides, had a random configuration near to an alternating configuration.  相似文献   

17.
Organotin compounds were found to lead to polymerization of N-carboxy anhydrides. The polymerization was studied in detail using γ-benzyl N-carboxyl-t-glutamate anhydride (BGA). Compounds such as tributyltin methoxide, bis(tributyltin)oxide, and N-tributyltin imidazole polymerized BGA while others like dibutyltin dichloride, which are Lewis acids, failed. Polymerization of BGA in dioxane at various monomer to dibutyltin dimethoxide ratios showed a first order reaction to monomer. The plot of In M0/M1 vs time showed two stage kinetics, the second one being faster. The pseudo first order rate constants were smaller than those for primary amine initiated polymerizations and much smaller than that for polymerization initiated by sodium methoxide. The molecular weights were independent of the monomer to initiator ratio both in dioxane and in DMF. In the reaction of an equimolar amount of tributyltin methoxide with NCA, the methyl ester of the amino acid was formed.The mechanism suggested is that of addition of the organotin compound to the NCA forming an organotin carbamate which decarboxylates, leaving an active -N-Sn-group which adds to another NCA molecule. This process is repeated in every step of the propagation.  相似文献   

18.
β‐Methyl‐α‐methylene‐γ‐butyrolactone (MMBL) was synthesized and then was polymerized in an N,N‐dimethylformamide (DMF) solution with 2,2‐azobisisobutyronitrile (AIBN) initiation. The homopolymer of MMBL was soluble in DMF and acetonitrile. MMBL was homopolymerized without competing depolymerization from 50 to 70 °C. The rate of polymerization (Rp) for MMBL followed the kinetic expression Rp = [AIBN]0.54[MMBL]1.04. The overall activation energy was calculated to be 86.9 kJ/mol, kp/kt1/2 was equal to 0.050 (where kp is the rate constant for propagation and kt is the rate constant for termination), and the rate of initiation was 2.17 × 10?8 mol L?1 s?1. The free energy of activation, the activation enthalpy, and the activation entropy were 106.0, 84.1, and 0.0658 kJ mol?1, respectively, for homopolymerization. The initiation efficiency was approximately 1. Styrene and MMBL were copolymerized in DMF solutions at 60 °C with AIBN as the initiator. The reactivity ratios (r1 = 0.22 and r2 = 0.73) for this copolymerization were calculated with the Kelen–Tudos method. The general reactivity parameter Q and the polarity parameter e for MMBL were calculated to be 1.54 and 0.55, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1759–1777, 2003  相似文献   

19.
A method for preparing hyperbranched poly(L-lysine) via the polymerization of N?-carbobenzoxy-L-lysine-N-carboxyanhydride has been developed in order to regulate the molecular mass and size of this polymer and to modify amino groups of its N-terminal lysine residues. This method includes the reductive removal of an N?-carbobenzoxy group by hydrogen over activated palladium in the presence of a chain termination agent, which is the activated ether of Nα-tert-butyloxycarbonylhistidine. The structure of the polymers has been studied by capillary electrophoresis, circular dichroism, and molecular hydrodynamics.  相似文献   

20.
The polymerization of N-carboxy-DL -alanine anhydride and N-carboxy-L -alanine anhydride were carried out in various solvents such as acetonitrile, dimethyl sulfoxide (DMSO), and nitrobenzene. The x-ray diffraction diagram and the infrared spectra of the polymers of DL - and L -alanine were obtained. The polypeptides obtained in acetonitrile and in nitrobenzene were in the α conformation, and the conformation of polypeptide obtained in acetonitrile was not influenced by its molecular weight. The polypeptide obtained in DMSO was essentially in the β conformation. It was observed that the α and β forms of polyalanine were altered on treatment of the polymer with m-cresol, dichloroacetic acid, or formic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号