首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benzoyl and ethoxycarbonyl isothiocyanates reacted with 2-cyanoethanoic acid hydrazide 2 to afford 1-cyanoacetyl-4-substituted thiosemicarbazide ( 5a,b ). Compound 5a afforded the pyrazolo[1,5-a]-s-triazine derivative 6 on treatment with 5% potassium hydroxide, and cyclised to 2-benzoylamino-5-cyanomethyl-1,3,4-thiadiazole ( 8 ) when boiled under reflux in glacial acetic acid. Compound 8 condensed with aromatic aldehydes to yield the corresponding arylidene derivatives 9a-c . It undergoes coupling with aromatic diazonium salts to afford the hydrazones 11a-c . Similarly, it coupled with diazotised aminopyrazole to afford the cyclic product 12 .  相似文献   

2.
4-Cyano-5,6-diphenyl-2,3-dihydropyridazine-3-onc 1 reacts with phosphorous oxychloride to give 70% of the corresponding 3-chloro derivative 2. Treating 2 with anthranilic acid in butanol, 4-cyano-2,3-diphenyl-10H-pyridazino[6,1-b]quinoxaline-10-one, 3 was obtained. Compound 1 reacts with phosphorous pentasulphide to give 3-mercapto derivative 4, which was converted by acrylonitrile to S-(2-cyanoethyl)pyridazine derivative 5. Compound 4 reacts with ethyl bromoacetate and with phenacyl bromide gave the corresponding thieno[2,3-c] pyridazine derivatives 8, 9, Alkylation of 1 with ethyl chloroacetate afforded 3-0-carbethoxymethyl derivative 10. Compound 10 reacts with amines (aniline, hydrazine) to give the corresponding amide and acid hydrazide 13, 12 respectively. Hydrolysis of 10 with sodium hydroxide gave the corresponding acid derivative 11. Treating 1 with methyl iodide, 3-0-methyl derivative 14 was obtained, which was converted by ammonium acetate/acetic acid to 3-amino-4-cyano-5,6-diphenyl pyridazine 15. Compound 1 reacts with methyl magnesium iodide gave 4-acetyl derivative 16, which was reacted with hydrazine, phenyl hydrazine and with hydroxylamine to give the substituted I H pyrazolo [3,4-c] pyridazine 17 a,b and isoxazolo [5,4-c] pyridazine 18 derivatives respectively.  相似文献   

3.
Malononitrile (I) reacted with thioglycolic acid to yield the thiazolin-4-one derivatives II or III depending on the molar ratio of the reactants. Compound II reacted with benzaldehyde in refluxing pyridine to yield the arylidene derivative IV. On the other hand, the benzylidine bis derivative VIII was obtained when II was reacted with benzaldehyde in refluxing ethanol. The structure of IV was established via its synthesis from the reaction of benzylidenemalononitrile (VI) and thioglycolic acid in refluxing acetic acid. Similar to II, compound III condensed with benzaldehyde to yield the benzylidene derivative IX.  相似文献   

4.
Benzoylacetonitrile (II) reacted with trichloroacetonitrile (III) to yield the β-amino-β-trichloromethylacrylonitrile IV. Compound IV reacted with hydrazine hydrate to yield 5-amino-4-cyano-3-phenylpyrazole (V) and with 2-aminopyridine to yield the aminopyridine derivative VIII (cf., Chart I). Compound IV reacted with III to yield 2,4-bis(trichloromethyl)-5-cyano-6-phenylpyrimidine (I) which could be converted into a variety of pyrazolo[4,3-d]pyrimidine derivatives by treatment with hydrazine hydrate under a variety of different experimental conditions (cf., Chart II).  相似文献   

5.
Abstract

3,5-Dicyano-6-mercapto-4-phenylpyridin-2(1H)-one (1) was reacted with ethyl chloroacetate to give compound (II) which on reaction with hydrazine hydrate gave the corresponding hydrazide derivative (III). Acylation of (III) with acetic acid, phenylisocyanate, or phenylisothiocyanate gave different monoacyl derivatives (IV-VI). Condensation of III with aromatic aldehydes and acetylacetone gave compounds VIIa-c, VIII respectively. Compound I was reacted with chloroanilides, bromoacetone and phenacyl bromide to yield the IX-XI; these and compound II gave thieno[2,3-b]-pyridines (XU-XV) on treatment with sodium ethoxide solution. Reaction of XII with acetic anhydride gave the diacetyl derivative XVI. Hydrolysis of compound XII with sodium hydroxide gave the corresponding acid (XVII) which on treatment with acetic anhydride gave the oxazine derivative (XVIII). Reaction of oxazine compound XVIII with ammonium acetate and hydrazine hydrate gave pyrido[3′,2′:4,5] thieno[3,2-d]pyrimidin-4.7-dione derivative (XIX) and (XX) respectively. The N-amino derivative (XX) was reacted with 4-nitrobenzaldehyde to give the corresponding azomethine (XXI).

Significant in vitro gram-positive and gram negative antibacterial activities as well as anti-fungal effect were observed for some members of the series.  相似文献   

6.
Alkylation of 5-cyano-4-oxo-6-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine I with methyl iodide, chloroacetic acid or 3-chloro-2,4-pentanedione, afforded the S-alkyl derivatives IIa-c. 2-Carboxymethylthio and 2-(2′,4′-dioxopentan-3-ylthio) derivatives IIb and IIc could be cyclised by acetic anhydride or polyphosphoric acid to give 6-cyano-3,5-dioxo-5H-7-phenylthiazolo[3,2-a]pyrimidine III and 2-acetyl-6-carboxamido-5H-3-methyl-7-phenylthiazolo[3,2-a]pyrimidine-5-one IX , respectively. Benzoylation of 2-hydrazinopyrimidine derivative XII , in anhydrous dioxan, afforded the N-benzoyl derivative XIII , which could be cyclised by heating in dimethylformamide to give 5-amino-6-cyano-3,7-diphenyl-s-triazolo[4,3-a]pyrimidine ( XIV ). The 2-hydrazinopyrimidine derivatives XII and XV reacted with benzoyl isothiocyanate in dioxane to yield 4-benzoylthiosemicarbazide derivatives XVI and XVII , which were converted into the 2-s-trizolopyrimidine derivatives XVIII and XIX , respectively. Also, XVI and XVII reacted with 2,4-pentanedione and 3-chloro-2,4-pentanedione to yield 2-pyrazolopyrimidine derivatives XX and XXI , respectively.  相似文献   

7.

Nicotinic acid esters 3a–c were prepared by the reaction of pyridine-2(1H)-thione derivative 1 with α-halo-reagents 2a–c. Compounds 3a–c underwent cyclization to the corresponding thieno[2, 3-b]pyridines 4a–c via boiling in ethanol/piperidine solution. Compounds 4a–c condensed with dimethylformamide-dimethylacetal (DMF-DMA) to afford 3-{[(N,N-dimethylamino)methylene]amino}thieno[2, 3-b]- pyridine derivatives 6a–c. Moreover, compounds 4a–c and 6a–c reacted with different reagents and afforded the pyrido[3′,2′:4, 5]thieno[3, 2-d]pyrimidine derivatives 10a–d, 11a–c, 12a,b, 14a,b, 17, and 19. In addition, pyrazolo[3, 4-b]pyridine derivative 20 (formed via the reaction of 1 with hydrazine hydrate) reacted with ethylisothiocyanate yielded the thiourea derivative 21. Compound 21 reacted with α-halocarbonyl compounds to give the 3-[(3H-thiazol-2-ylidene)amino]-1H-pyrazolo[3, 4-b]pyridine derivatives 23a–c, 25, and 27a,b.  相似文献   

8.
1-Alkyl-3-carboxyindole-2-acetic acid anhydrides (I) react with ethylenediamine and with o-phenylenediamine to give directly 10-alkylimidazo[3,2:1′,2′]pyrido[4,5-b]indol-5(1H)-ones (II) and 5,6-dihydro-5-alkyl-13H-indolo[2′,3′:4,5]pyrido[1,2-a]benzimidazol-13-one (V), respectively. However, anhydrides I react with o-aminophenol and with o-aminothiophenol to give carboxyindole-acetanilide derivatives IX, which can be cyclised to indolo[2′,3′:4,5]pyrido[2,1-b]benzoxazolone and indolo[2′,3′:4,5]pyrido[2,1-b]benzthiazolone (XI). Some derivatives of II and V were prepared to help in elucidating the structures.  相似文献   

9.
Thiation of [1,2,4]triazino[3,2-b]quinazoline-3,10-dione 1 proceeds selectively to give the 3-thioxo-analog 3 . The latter was converted to the corresponding 3-methylthio derivative 4 which was reacted with aniline and hydrazine to give the corresponding anilino- and hydrazino derivatives 5 and 7 . Compound 7 was converted to the hydrazones 8a,b and into the novel heterocyclic ring systems [1,2,4]triazolo[4′,3′:4,5][1,2,4]triazino-[3,2-b]quinazolin-7-ones 9, 10a,b and tetrazolo[1′,5′:4,5][1,2,4]triazino[3,2-b]quinazolin-7-one 11 .  相似文献   

10.
New 2-pyridone derivatives bearing p-methoxyphenyl and p-bromophenyl substituents at C-4 and C-6 were prepared smoothly by the one-pot reaction in high yield, and in a comparatively short time, it reacted with phosphorous oxychloride to produce the corresponding chloro compound. The latter was reacted with several nitrogen nucleophiles such as sodium azide, hydrazine, acetohydrazide, and benzohydrazide to give tetrazolo, hydrazino, and triazolo derivatives, respectively. The reaction of hydrazino derivative with cyclopentanone, furan-2-carbaldehyde afforded the corresponding hydrazone derivatives. Cyclocondensation of the latter compounds with thioglycolic acid afforded the nicotinamide derivatives. 2-Pyridone reacted with ethyl chloroacetate to afford chloroacetate and ethyl acetate derivatives. Ethyl acetate-derivative reacted with hydrazine hydrate and gave the acetohydrazide derivative, it was condensed with p-anisaldehyde and gave the 4-methoxybenzylidene acetohydrazide derivative. Also, 2-pyridone reacted with chloroacetic acid and or benzoyl chloride, afforded the benzoate derivative and 2-((6-(4-bromophenyl)-3-cyano-4-(4-methoxyphenyl) pyridin-2-yl) oxy) acetic acid, respectively. Structures of the products were confirmed using spectroscopic data and elemental analyses. Antibacterial activity of the synthesized compounds was evaluated against Escherichia coli and Staphylococcus aureus.  相似文献   

11.
This paper describes one-pot synthesis of 5H-[1,3]thiazolo[3,2-a]pyrido[3,2-e]pyrimidin-5-one 4 , 5H-dipyri-do[1,2-a:3′,2′-e]pyrimidin-5-one 10 and 5H-pyrido[3,2-e]pyrimido[1,2-a]pyrimidin-5-one 15 and some of their derivatives, starting with 2-chloro-3-pyridine carboxilic acid 1. Compounds 4 and 10 reacted with phosphorus pentasulfide to give the respective 5-thione analogues, 5 from 4 and 11 from 10 . Boiling the 5-thione derivatives with hydrazine hydrate, the respective 5-hydrazono derivatives 6 from 5 and 12 from 11 were obtained. The 5-acetyl hydrazono, 7 , and the 5-isopropylidenehydrazono, 8 , derivatives were also prepared from 6 , and the 5-propionylhydrazono derivatives, 13 , from 12 . Compound 4 reacted with hydrazine to give an adduct with two molecules of hydrazine and the probable structure 16 . Treating this adduct with acetone a monohydrazone 17 was obtained. Boiling a suspension of this adduct in DMF, it gave 6,10-dihydro-6H-pyrido[3′,2′:5,6]pyrimido[2,1-c][1,2,4]triazin-5-one 20 .  相似文献   

12.
2‐Aminopyridine‐3‐carbonitrile derivative 1 reacted with each of malononitrile, ethyl cyanacetate, benzylidenemalononitrile, diethyl malonate, and ethyl acetoacetate to give the corresponding [1,8]naphthyridine derivatives 3 , 5 , 8 , 11 , and 14 , respectively. Further annulations of 3 , 5 , and 8 gave the corresponding pyrido[2,3‐b][1,8]naphthyridine‐3‐carbonitrile derivative 17 , pyrido[2,3‐h][1,6]naphthyridine‐3‐carbonitrile derivatives 18 and 19 , respectively. The reaction of 1 with formic acid, formamide, acetic anhydride, urea or thiourea, and 4‐isothiocyanatobenzenesulfonamide gave the pyridopyrimidine derivatives 20a , b , 21 , 22a , b , and 26 , respectively. Treatment of compound 1 with sulfuric acid afforded the amide derivative 27 . Compound 27 reacted with 4‐chlorobenzaldehyde and 1H‐indene‐1,3(2H)‐dione to give the pyridopyrimidine derivative 28 and spiro derivative 30 , respectively. In addition, compound 1 reacted with halo compounds afforded the pyrrolopyridine derivatives 32 and 34 . Finally, treatment of 1 with hydrazine hydrate gave the pyrazolopyridine derivative 35 . The structures of the newly synthesized compounds were established by elemental and spectral data.  相似文献   

13.
2‐Thioxo‐1,2,5,6,7,8‐hexahydroquinoline‐3‐carbonitrile ( 2 ) was easily S‐alkylated to produce alkyl mercapto derivatives 3a‐g . The latter compounds were cyclized to afford thienotetrahydroquinolines 4a‐g . Several pyrimidothienotetrahydroquinolines 5a‐d , and 6a‐d were obtained from the condensation of compounds 4c‐f with different reagents. o‐Aminocarbohydrazide derivative 11 was reacted with aromatic aldehydes, acetylacetone, nitrous acid and CS2 to afford compounds 12–15 . Compound 24 was coupled with aryldiazonium chloride to afford arylazo derivatives 25 . Also it condensed with aromatic aldehydes to give arylidene derivatives 26 . The latter compounds were reacted with malononitrile to give pyrano derivative 27 .  相似文献   

14.
4-(3-(4-Hydroxyphenyl)-1-phenyl-1H-pyrazol-4-yl)-6-phenyl-2-thioxo-1,2-di hydro-pyridine-3-carbonitrile (1) reacted with ethyl chloroacetate (2) in ethanolic sodium acetate solution to yield the corresponding ethyl (3-cyanopyridin-2-ylsulphanyl)acetate derivative 3. Intramolecular cyclization of compound 3 was achieved by its heating in DMF containing potassium carbonate to afford the corresponding ethyl 3-aminothieno[2,3-b]pyridine-2-carboxylate derivative 4 which reacted with hydrazine hydrate in refluxing pyridine to yield the starting material 3-aminothieno[2,3-b]pyridine-2-carbohydrazide derivative 7. Compound 7 reacted with different reagents such as triethylorthoformate, formic acid, acetic acid and acetic anhydride to afford the target molecules pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4(3H)-one derivatives 8–10, 12 and 13 in good to excellent yields. On the other hand, pyridine-2(1H)-thione derivative 1 reacted with hydrazine hydrate in refluxing pyridine to give the other starting material 3-amino-1H-pyrazolo[3,4-b]pyridine derivative 20 which reacted with acetylacetone under reflux to afford the target molecule pyrido[2′,3′:3,4]pyrazolo[1,5-a]-pyrimidine derivative 21 in a good yield. The structures of target molecules were elucidated using elemental analyses and spectral data.  相似文献   

15.
A new, two step synthesis of a pyrano[2,3-b]pyridine derivative 5 is described. Dehydro-acetic acid and N,N-dimethylformamide dimethylacetal was condensed to form 2 . Compound 2 was converted into 5 by reaction with hydroxylamine which opens the lactone ring.  相似文献   

16.
In this paper, we present the synthesis of new selenoloquinoxaline derivatives starting from 2-chloroquinoxaline-3-carbonitrile 1 . The compound 1 was subjected to a reaction with selenium metal in the presence of NaBH4 as a reducing agent in ethanol, under a nitrogen atmosphere. This reaction resulted in the formation of the sodium salt of 3-cyanoquinoxaline-2-selenolate, which was subsequently reacted with α-halogenated carbonyl compounds in situ. This reaction produced a series of newly synthesized 3-aminoselenolo[2,3-b]quinoxaline-2-substituents. Ethyl 3-aminoselenolo[2,3-b]quinoxaline-2-carboxylate 3a was hydrolyzed by sodium hydroxide to give the corresponding sodium salt 9 . This salt was then refluxed with acetic anhydride to produce oxazinone compound 10 . The reaction of compound 10 with ammonium acetate afforded pyrimidoselenolo[2,3-b]quinoxaline derivative 11 . Compound 11 was then chlorinated using phosphorous oxychloride to give the corresponding chlorocompound.  相似文献   

17.
Herein, we report the synthesis, characterization, and preliminary pharmacological activity of a new series of substituted pyrazolopyridazine derivatives. Compound 1 was reacted with ethoxymethylene malononitrile 2 in refluxing ethanol to give the corresponding compound 3 , which was treated with hydrazine hydrate or formamide to give pyrazolo[3,4‐c]pyrazole 4 and pyrazolo pyrimidine 5 derivatives, respectively. Also, compound 3 was reacted with NH4SCN or carbon disulphide or ethyl acetoacetate to yield the corresponding pyrazolo derivatives 6 , 7 , 8 , respectively. Additionally, compound 3 was reacted with triethyl orthoformat in acetic anhydride to give 9 , which was treated with hydrazine hydrate to give hydrazino derivative 10 . The latter compound transformed into the pyrazolo[4,3‐e][1,2,4]triazolo[1,5‐c]‐pyrimidine 11 via refluxing with acetic anhydride. Finally, compound 9 was reacted with benzoic acid hydrazide or mercapto acetic acid to give compounds 12 and 13 , respectively. The latter compound was treated with refluxing ethanolic sodium ethoxide solution to afford the pyrazolothiazolopyrimidine 14 . Some of the compounds exhibited better activities as anti‐inflammatory and antimicrobial agents than the reference controls. The detailed synthesis, spectroscopic data, anti‐inflammatory, and antimicrobial activities of the synthesized compounds was reported.  相似文献   

18.
Oxidation of 1-methyl-3-methoxycarbonyl-β-carboline with selenium dioxide gave 1-formyl-3-methoxycarbonyl-β-carboline II . Compound II reacted with acetic or propionic anhydride to give easily the 2-methoxycarbonyl-6H-indolo[3,2,1-d,e][1,5]naphthyridin-6-ones III ; reaction of II with some primary amines led to the formation of the Schiff bases IV , which were reduced to the 1-aminomethyl-3-methoxycarbonyl-β-carbolines V with sodium borohydride. Cyclization of V with aqueous formaldehyde led to the pyrimido[3,4,5-lm]pyrido[3,4-b]indoles VI . Analogously, cyclization with formaldehyde, acetone or 1,1′-carbonyldiimidazole of the 3-aminomethyl- 1,2,3,4-tetrahydro-β-carbolines VIII , obtained by reaction of 3-methoxycarbonyl-1,2,3,4-tetrahydro-β-carboline VII with amines followed by lithium aluminium hydride reduction of the resulting amides, gave the imidazo[1′,5′-1,6]pyrido[3,4-b]indoles IX and X . Dieckmann cyclization of 3-methoxycarbonyl-2-[(3-ethoxycarbonyl)-1-propyl]-1,2,3,4-tetrahydro-β-carboline XI led to a 1:1 mixture of the β-ketoesters XII and XIII , which underwent deethoxycarbonylation to 5,6,8,9,10,11,11a,12-octahydroindolo[3,2-b]quinolizin-11-one XIV . Finally, the polyphosphoric acid (or esters) catalyzed cyclization of the N-acyl derivatives XVI of 3-hydrazinocarbonyl-β-carboline XV led smoothly to the 3-(1,3,4-oxadiazol-2-yl)-β-carbolines XVII .  相似文献   

19.
Pyridoxol and pyridoxal on benzylation with dimethylphenylbenzylammonium hydroxide (“leucotrope”) gave 3-O-benzylpyridoxol (IV) and 3-O-benzylpyridoxal (V), respectively. As a possible mechanism of this reaction an ion pair intermediate has been postulated. Oxidation of IV and V with chromic oxide-pyridine-acetic acid complex gave 3-O-benzyl-4-pyridoxic acid lactone (VI), which could also be obtained by benzylation of 4-pyridoxic acid. Treatment of VI with dimethylamine gave 2-methyl-3-benzyloxy-5-hydroxymethylpyridine-4-N,N-dimethylcarbox-amide (X) which oxidized to form the 5-formyl derivative (XI). The latter on hydrolysis yielded the metabolite, 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylic acid (I). When reacted with liquid ammonia, VI gave 3-O-benzyl-4-pyridoxamide (VII) which was then oxidized to give 2-methyl-3-benzyloxypyridine-4,5-dicarboxylic acid cyclicimide(IX). Acid hydrolysis of IX gave another metabolite, 2-methyl-3-hydroxypyridine-4,5-dicarboxylic acid (XIII), which could also be obtained by oxidizing XI with potassium permanganate in water to yield 2-methyl-3-benzyloxy-5-carboxypyridine-4-N,N-dimethylcarboxamide (XII) and subsequent hydrolysis with hydrochloric acid. A positional isomer of I, 2-methyl-3-hydroxy-4-formylpyridine-5-carboxylic acid (XVII) was synthesized starting from 3-O-benzyl-5-pyridoxic acid lactone (XIV) following similar reaction sequences used for the preparation of I. Ring-chain tautomerism has been studied in I, XVII, opianic acid (XVIII), phthalaldehydic acid (XIX) and (2-carboxy-4,5-dimethoxy)-phenylacetaldehyde (XX) in different solvents by nmr and in the solid state by ir spectroscopy. A direct and reliable differentiation between the open form (aldehyde proton in low field) and the ring form (lactol proton in the intermediate field) has been obtained by nmr spectroscopy. In sodium deuteroxide and pyridine-d5 the open chain form existed exclusively (except for homolog (XX) which is in cyclic form in pyridine-d5), whereas in 18% hydrogen chloride in deuterium oxide all the compounds are completely in the cyclic form. In hexafluoroacetone hydrate-d2, XVIII, XIX, and XX exist in the cyclic form whereas I is in the open form. In DMS0-d6 both cyclic and open-chain forms have been observed in XVIII, XIX and XX. Definite peak assignment for the two forms could not be made in I due to broadening or superimposition with C6-H. The metabolite I, isometabolite (XVII) and opianic acid (XVIII) form cyclic acetyl derivatives which give a sharp lactol peak. In the solid state XVIII, XIX are in the cyclic form and I and XX in the open-chain form as observed by ir spectroscopy.  相似文献   

20.
3-Phenylpyrazole-5-(liazonium chloride ( 1 ) couples with α-chloro derivatives of acetylacetone, ethyl acetoacetate and aceto-o-anisidine to yield the corresponding pyrazole-5-yl hydrazonyl chloride derivatives 2a-c . Compounds 2a,b were cyclised to yield either the pyrazolo[1,5-c]-1,2,4-triazole derivatives 3a,b or the pyrazolo[1,5-c]-as-triazines 4a,b depending on the applied reaction conditions. Compound 2c cyclised only into 3c under different cyclization conditions. The pyrazolo[1,5-c]-as-triazine derivatives 4c-e could be prepared via condensation of 2a with potassium cyanide. Compound 2d reacted with aromatic thioles and with sodium benzene-sulphonate to yield the pyrazolo[1,5-c]-as-triazine derivatives 6a-d . Compound 1 reacted with activated double bond systems to yield pyrazolo[1,5-c]-as-triazines 8a,b and 9 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号