首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of cyanomethyl methacrylate (CyMA) homopolymerization was investigated in acetonitrile with azobisisobutyronitrile as initiator. The rate of polymerization Rp was expressed by Rp = k[AIBN]0.49[CyMA]1.2 and the overall activation energy was calculated as 72.3 kJ/mol. Kinetic constants for CyMA polymerization were obtained as follows: kp/k = 0.10 L1/2s?1/2; 2fkd = 1.57 × 10?5s?. The relative reactivity ratios of CyMA(M2) copolymerization with styrene (r1 = 0.15, r2 = 0.29) and methyl methacrylate (r1 = 0.43, r2 = 0.75) in acetonitrile were obtained. Applying the Q-e scheme (in styrene copolymerization) led to Q = 1.64 and e = 0.98. The glass transition temperature Tg of poly(CyMA) was observed to be 91°C by thermomechanical analysis. Thermogravimetry of poly(CyMA) showed a 10% weight loss at 265°C in air.  相似文献   

2.
α-Methylene-N-methylpyrrolidone (α-MMP) was synthesized and homopolymerized by bulk and solution methods. The poly(α-MMP) is readily soluble in water, methanol, methylene chloride, and dipolar aprotic solvents at room temperature. Thermogravimetric analysis of poly(α-MMP) showed a 10% weight loss at 330°C in air. The kinetics of α-MMP homopolymerization and copolymerization were investigated in acetonitrile, using azobisisobutyronitrile (AIBN) as an initiator. The rate of polymerization Rp could be expresed by Rp = k[AIBN]0.49[α-MMP]1.3. The overall activation energy was calculated to be 84.1 kj/mol. The relative reactivity ratios of α-MMP (M2) copolymerization with methyl methacrylate (r1 = 0.59, r2 = 0.26) in acetonitrile were obtained. Applying the Q-e scheme led to Q = 2.18 and e = 1.77. These Q and e values are larger than those for acrylamide derivatives.  相似文献   

3.
N-phenyl-α-methylene-β-lactam (PML), a cyclic analog of N,N-disubstituted methacrylamides which do not undergo radical homopolymerization, was synthesized and polymerized with α,α′-azobis (isobutyronitrile) (AIBN) in solution. Poly (PML) (PPML) is readily soluble in tetrahydrofuran, chloroform, pyridine, and polar aprotic solvents but insoluble in toluene, ethyl acetate, and methanol. PPML obtained by radical initiation is highly syndiotactic (rr = 92%), exhibits a glass transition at 180°C, and loses no weight upto 330°C in nitrogen. The kinetics of PML homo-polymerization with AIBN was investigated in N-methyl-2-pyrrolidone. The rate of polymerization (Rp) can be expressed by Rp = k[AIBN]0.55[PML]1.2 and the overall activation energy has been calculated to be 87.3 kJ/mol. Monomer reactivity ratios in copolymerization of PML (M2) with styrene (M1) are r1 = 0.67 and r2 = 0.41, from which Q and e values of PML are calculated as 0.60 and 0.33, respectively.  相似文献   

4.
The kinetics of α-methylene-γ-butyrolactone (α-MBL) homopolymerization was investigated in N,N-dimethylformamide (DMF) with azobis(isobutyronitrile) as initiator. The rate of polymerization (Rp) was expresed by Rp = k[AIBN]0.54[α-MBL]1.1 and the overall activation energy was calculated as 76.1 kJ/mol. Kinetic constants for α-MBL polymerization were obtained as follows: kp/kt1/2 = 0.161 L1/2 mol?1/2·s?1/2; 2fkd = 2.18 × 10?5 s?1. The relative reactivity ratios of α-MBL(M2) copolymerization with styrene (r1 = 0.14, r2 = 0.87) were obtained. Applying the Qe scheme led to Q = 2.2 and e = 0.65. These Q and e values for α-MBL are higher than those for MMA  相似文献   

5.
Some kinetic studies were made of the homopolymerization of o-hydroxystyrene and its copolymerization behavior with styrene and methyl methacrylate in tetrahydrofuran using azobisisobutyronitrile as initiator were done. The rate of polymerization experimentally obtained is given by Rp = K[M][I]0.72. Accordingly, it is likely that the growing chain radicals are terminated not only by mutual termination but also by a chain-transfer mechanism, the latter occupying a considerable portion. The latter is mostly attributed to the transfer to monomer, i.e., Cm for o-hydroxystyrene was 1.3 × 10?2. Some transfer mechanisms were assumed, although it is difficult to elucidate the mechanism in detail, owing to its complexity. Effects of solvent on the rate of polymerization were examined, dioxane, methyl ethyl ketone, ethanol, and tetrahydrofuran being used. However, no differences were found among the solvents. The apparent activation energy of polymerization was found to be 21.5 kcal./mole. Monomer reactivity ratios and Alfrey-Price Q–e values for o-hydroxystyrene were determined. The Q–e values (Q = 1.41, e = ?1.13) are rather similar to those of p-methoxystyrene. Thus, the e value for o-hydroxystyrene is more negative than that for styrene.  相似文献   

6.
3-Methylene-5,5′-dimethyl-2-pyrrolidinone (α-MDMP), a cyclic analog of N-substituted methacrylamide, was synthesized and polymerized with α,α′-azobis (isobutyronitrile) (AIBN) in solution. Poly(α-MDMP) is only soluble in dimethyl sulfoxide (DMSO) at room temperature. Thermogravimetry of poly(α-MDMP) showed 10% weight loss at 355°C in air and 400°C under nitrogen, respectively. The kinetics of α-MDMP homopolymerization with AIBN was investigated in DMSO. The rate of polymerization (Rp) can be expressed by Rp = k[AIBN]0.49[α-MDMP]1.0 and the overall activation energy has been calculated to be 73.2 kJ/mol. Monomer reactivity ratios in copolymerization of α-MDMP (M2) with methyl methacrylate (M1) are r1 = 0.71 and r2 = 0.71, from which Q and e values of α-MDMP are calculated as 0.75 and -0.43, respectively. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Polymerization of N‐(1‐phenylethylaminocarbonyl)methacrylamide (PEACMA) with dimethyl 2,2′‐azobisisobutyrate (MAIB) was kinetically studied in dimethyl sulfoxide (DMSO). The overall activation energy of the polymerization was estimated to be 84 kJ/mol. The initial polymerization rate (Rp) is given by Rp = k[MAIB]0.6[PEACMA]0.9 at 60 °C, being similar to that of the conventional radical polymerization. The polymerization system involved electron spin resonance (ESR) spectroscopically observable propagating poly(PEACMA) radical under the actual polymerization conditions. ESR‐determined rate constants of propagation and termination were 140 L/mol s and 3.4 × 104 L/mol s at 60 °C, respectively. The addition of LiCl accelerated the polymerization in N,N‐dimethylformamide but did not in DMSO. The copolymerization of PEACMA(M1) and styrene(M2) with MAIB in DMSO at 60 °C gave the following copolymerization parameters; r1 = 0.20, r2 = 0.51, Q1 = 0.59, and e1 = +0.70. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2013–2020, 2005  相似文献   

8.
Ethyl α-hydroxymethylacrylate (EHMA) was synthesized and homopolymerized in bulk and in solution. The poly(EHMA) is readily soluble in alcohol, acetone, tetrahydrofuran, and methylene chloride at room temperature. Intramolecular lactone formation occurred when poly(EHMA) was heated to 180–230°C. The kinetics of EHMA homopolymerization was investigated in ethyl acetate, using α,α′-azobisisobutylonitrile as an initiator. The rate of polymerization Rp was expressed by Rp = k[AIBN]0.50[EHMA]1.4 and the overall activation energy was calculated as 71.9 kJ/mol. Kinetic constants for EHMA polymerization were obtained as follows: kp/k = 0.17L0.9mol?0.9s?0.5; 2fkd = 1.5 × 10?5 s?1. The relative reactivity ratios of EHMA(M2) copolymerization with styrene (r1 = 0.472, r2 = 0.564) in ethyl acetate were obtained. Applying the Q-e scheme led to Q = 0.84 and e = 0.35 for EHMA.  相似文献   

9.
N-acryloyl pyrrolidone (NAP) was synthesized by reaction of pyrrolidone with acryloyl chloride. First, the polymerization of NAP and copolymerization of NAP with styrene (St) were carried out at 60°C, using 2,2′-azobisisobutyronitrile (AIBN) as an initiator. Kinetic studies showed that the rate of polymerization (Rp) could be expressed by Rp = K [AIBN]0.5 [NAP]1.0. The reactivity of NAP was found to be larger than that of N-methacryloyl pyrrolidone. The overall activation energy was calculated to be 24.3 kcal mole?1. The following monomer reactivity ratio and Q and e values were obtained. NAP(M1)—St(M2): r1 = 1.50, r2 = 0.35, Q1 = 0.42, and e1 = 1.60. Second, graft copolymers were synthesized by reacting pyrrolidone, in the presence of a catalytic amount of its potassium salt, with poly(NAP-co-St).  相似文献   

10.
Free‐radical homo‐ and copolymerization behavior of N,N‐diethyl‐2‐methylene‐3‐butenamide (DEA) was investigated. When the monomer was heated in bulk at 60 °C for 25 h without initiator, rubbery, solid gel was formed by the thermal polymerization. No such reaction was observed when the polymerization was carried out in 2 mol/L of benzene solution with with 1 mol % of azobisisobutyronitrile (AIBN) as an initiator. The polymerization rate (Rp) equation was Rp ∝ [DEA]1.1[AIBN]0.51, and the overall activation energy of polymerization was calculated 84.1 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure where both 1,4‐E and 1,4‐Z structures were included. From the product analysis of the telomerization with tert‐butylmercaptan as a telogen, the modes of monomer addition were estimated to be both 1,4‐ and 4,1‐addition. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were also carried out in benzene solution at 60 °C. In the copolymerization with styrene, the monomer reactivity ratios obtained were r1 = 5.83 and r2 = 0.05, and the Q and e values were Q = 8.4 and e = 0.33, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 999–1007, 2004  相似文献   

11.
The polymerization of benzyl N-(2,6-dimethylphenyl)itaconamate (BDMPI) with benzoyl peroxide (BPO) in N,N-dimethylformamide (DMF) was studied kinetically by ESR. The polymerization rate (Rp) at 70°C was given by Rp = k[BPO]0.78[BDMPI]1.1. The overall activation energy of polymerization was determined to be 83.7 kJ/mol. The number-average molecular weight of poly(BDMPI) was in the range of 1500–2000 by gel permeation chromatography. From the ESR study, the polymerization system was found to involve ESR-observable propagating radicals of BDMPI under practical polymerization conditions. Using the polymer radical concentration by ESR, the rate constants of propagation (kp) and termination (kt) were determined in the temperature range of 50–70°C. The kp value seemed dependent on the chain-length of propagating radical. The analysis of polymers by the MALDI-TOF mass spectrometry suggested that most of the resulting polymers contain the dimethylamino terminal group. The copolymerization of BDMPI (M1) and styrene (M2) at 50°C in DMF gave the following copolymerization parameters; r1 = 0.49, r2 = 0.26, Q1 = 1.2, and e1 = +0.63. The thermal behavior of poly(BDMPI) was examined by dynamic thermogravimetry and differential scanning calorimetry. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1891–1900, 1997  相似文献   

12.
3‐Ethyl‐3‐methacryloyloxymethyloxetane (EMO) was easily polymerized by dimethyl 2,2′‐azobisisobutyrate (MAIB) as the radical initiator through the opening of the vinyl group. The initial polymerization rate (Rp) at 50 °C in benzene was given by Rp = k[MAIB]0.55 [EMO]1.2. The overall activation energy of the polymerization was estimated to be 87 kJ/mol. The number‐average molecular weight (M?n) of the resulting poly(EMO)s was in the range of 1–3.3 × 105. The polymerization system was found to involve electron spin resonance (ESR) observable propagating poly(EMO) radicals under practical polymerization conditions. ESR‐determined rate constants of propagation (kp) and termination (kt) at 60 °C are 120 and 2.41 × 105 L/mol s, respectively—much lower than those of the usual methacrylate esters such as methyl methacrylate and glycidyl methacrylate. The radical copolymerization of EMO (M1) with styrene (M2) at 60 °C gave the following copolymerization parameters: r1 = 0.53, r2 = 0.43, Q1 = 0.87, and e1 = +0.42. EMO was also observed to be polymerized by BF3OEt2 as the cationic initiator through the opening of the oxetane ring. The M?n of the resulting polymer was in the range of 650–3100. The cationic polymerization of radically formed poly(EMO) provided a crosslinked polymer showing distinguishably different thermal behaviors from those of the radical and cationic poly(EMO)s. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1269–1279, 2001  相似文献   

13.
Radical polymerization of N,N,N′,N′-tetraalkylfumaramides (TRFAm) bearing methyl, ethyl, n-propyl, isopropyl, and isobutyl groups as N-substituents (TMFAm, TEFAm, TnPFAm, TIPFAm, and TIBFAm, respectively) was investigated. In the polymerization of TEFAm initiated with 1,1′-azobiscyclohexane-1-carbonitrile (ACN) in benzene, the polymerization rate (Rp) was expressed as follows: Rp = k [ACN]0.28 [TEFAm]1.26, and the overall activation energy was 102.1 kJ/mol. The introduction of a bulky alkyl group into N-substituent of TRFAm decreased the Rp in the following order: TMFAm > TEFAm > TnPFAm > TIBFAm > TIPFAm ~ 0. The relative reactivities of these monomers were also investigated in radical copolymerization with styrene (St) and methyl methacrylate (MMA). In copolymerization of TRFAm (M2) with St (M1), monomer reactivity ratios were determined to be r1 = 1.07 and r2 = 0.20 for St–TMFAm, and r1 = 1.88 and r2 = 0.11 for St–TEFAm, from which Q2 and e2 values were estimated to be 0.35 and 0.44 for TMFAm, and 0.19 and 0.47 for TEFAm, respectively. The other TRFAm were also copolymerized with St, but copolymerization with MMA gave polymers containing a small amount of TRFAm units. The polymer from TRFAm consists of a less-flexible poly(N,N-dialkylaminocarbonylmethylene) structure. The solubility and thermal property of the polymers were also investigated.  相似文献   

14.
Radical homo- and copolymerizations of methyl α-trifluoroacetoxyacrylate (MTFAA) are studied by using azo initiators at 40 and 60°C. The rate of the homopolymerization of MTFAA was lower than that of methyl α-acetoxyacrylate. Monomer reactivity ratios (r), and Q and e values were estimated to be r1 = 0.03, r2 = 0.27, Q1 = 0.65, and e1 = 1.38 from the copolymerization of MTFAA (M1) and styrene (M2) at 60°C. Preferential crosspropagation was observed in particular in the copolymerization of MTFAA and α-methylstyrene. The influence of replacing the hydrogens of the acetoxy moiety of the acyloxyacrylate with the fluorines upon the copolymerization reactivity is discussed on the basis of the 13C-NMR chemical shift of various acyloxyacrylates. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3537–3541, 1997  相似文献   

15.
Polymerization of 2‐methacryloyloxyethyl phosphorylcholine (MPC) was kinetically investigated in ethanol using dimethyl 2,2′‐azobisisobutyrate (MAIB) as initiator. The overall activation energy of the homogeneous polymerization was calculated to be 71 kJ/mol. The polymerization rate (Rp) was expressed by Rp = k[MAIB]0.54±0.05 [MPC]1.8±0.1. The higher dependence of Rp on the monomer concentration comes from acceleration of propagation due to monomer aggregation and also from retardation of termination due to viscosity effect of the MPC monomer. Rate constants of propagation (kp) and termination (kt) of MPC were estimated by means of ESR to be kp = 180 L/mol · s and kt = 2.8 × 104 L/mol · s at 60 °C, respectively. Because of much slower termination, Rp of MPC in ethanol was found at 60 °C to be 8 times that of methyl methacrylate (MMA) in benzene, though the different solvents were used for MPC and MMA. Polymerization of MPC with MAIB in ethanol was accelerated by the presence of water and retarded by the presence of benzene or acetonitrile. Poly(MPC) showed a peculiar solubility behavior; although poly(MPC) was highly soluble in ethanol and in water, it was insoluble in aqueous ethanol of water content of 7.4–39.8 vol %. The radical copolymerization of MPC (M1) and styrene (St) (M2) in ethanol at 50 °C gave the following copolymerization parameters similar to those of the copolymerization of MMA and St; r1 = 0.39, r2 = 0.46, Q1 = 0.76, and e1 = +0.51. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 509–515, 2000  相似文献   

16.
The monomer reactivity ratios for the radical copolymerization of crotononitrile (CN), methyl crotonate (MC), and n-propenyl methyl ketone (PMK) with styrene (St) were measured at 60°C. in benzene and little penultimate unit effect was shown for these systems. The values obtained were: St–CN, r1 = 24.0, r2 = 0; St–MC, r1 = 26.0, r2 = 0.01; St–PMK, r1 = 13.7, r2 = 0.01. The rate of copolymerization and the viscosity of the copolymer decreased markedly as the molar fraction of the crotonyl compound in the monomer mixture increased. The Q–e values were also calculated to be as follows: CN, e = 1.13, Q = 0.009; MC, e = 0.36, Q = 0.015; PMK, e = 0.61, Q = 0.024. A linear relationship was obtained between the e values of the crotonyl compounds and their Hammett constants σm.  相似文献   

17.
Trimethylamine-4-vinylbenzimide (TAVBI) has been homo- and copolymerized with styrene, methyl methacrylate, and hydroxypropyl methacrylate by free-radical initiators to soluble, low molecular weight polymers containing pendant aminimide groups along the backbone of the polymer molecules. The reactivity ratios in the copolymerization of TAVBI (M1) with styrene (M2) were determined: r1 = 0.63 ± 0.07, r2 = 0.47 ± 0.05. The Alfrey-Price Q and e values for TAVBI were also calculated: Q = 0.88, e = 0.31. This introductory work indicates that TAVBI has potential for the preparation of a wide variety of reactive polymers.  相似文献   

18.
4-Methylene-4H-1,3-benzodioxin-2-one (MBDOON), an α-substituted cyclic styrene derivative, was synthesized and polymerized readily with 2,2′-azobis(isobutyronitrile) (AIBN) as an initiator in solution. The kinetics of the MBDOON homopolymerization with AIBN was investigated in N-methyl-2-pyrrolidone (NMP). The rate of polymerization, Rp, can be expressed by Rp ? k[AIBN]0.52[MBDOON]1.1 and the overall activation energy has been calcualted to be 75.7 kJ/mol. Monomer reactivity ratios in copolymerization of MBDOON (M2) with styrene (M1) are r1 = 0.31 and r2 = 3.20, from which Q and e values of MBDOON can be calculated as 3.0 and ?0.7, respectively. Ring-substituted MBDOON monomers such as 6-chloro, 6-methyl, and 7-methoxy derivatives were synthesized and polymerized with AIBN. The 6-substituted MBDOON's readily underwent radical polymerization while the 7-methoxy-MBDOON was slower to polymerize. Poly(MBDOON) is predominantly heterotactic. (rr = 35, mr = 46, and mm = 19%). The polymer releases carbon dioxide at about 200°C and is converted with some depolymerization to poly[(o-hydroxyphenyl)acetylene]. The thermolysis temperature is very much affected by the ring substituent. The onset of carbon dioxide liberation was observed at 140°C in the case of the 7-methoxyl derivative while the 6-substituents had a smaller effect on the decarboxylation temperature. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
The copolymerization of 4-cyclopentene-1,3-dione (M2) with p-chlorostyrene and vinylidene chloride is reported. The copolymers were prepared in sealed tubes under nitrogen with azobisisobutyronitrile initiator. Infrared absorption bands at 1580 cm.?1 revealed the presence of a highly enolic β-diketone and indicated that copolymerization had occurred. The copolymer compositions were determined from the chlorine analyses and the reactivity ratios were evaluated. The copolymerization with p-chlorostyrene (M1) was highly alternating and provided the reactivity ratios r1 = 0.32 ± 0.06, r2 = 0.02 ± 0.01. Copolymerization with vinylidene chloride (M1) afforded the reactivity ratios r1 = 2.4 ± 0.6, r2 = 0.15 ± 0.05. The Q and e values for the dione (Q = 0.13, e = 1.37), as evaluated from the results of the vinylidene chloride case, agree closely with the previously reported results of copolymerization with methyl methacrylate and acrylonitrile and confirm the general low reactivity of 4-cyclopentene-1,3-dione in nonalternating systems.  相似文献   

20.
2-Trimethylsilyloxy-1,3-butadiene (TMSBD), the silyl enol ether of methyl vinyl ketone, was homopolymerized with a radical initiator to afford polymers with a molecular weight of ca. 104. Radical copolymerizations of TMSBD with styrene (ST) and acrylonitrile (AN) in bulk or dioxane at 60°C gave the following monomer reactivity ratios: r1 = 0.64 and r2 = 1.20 for the ST (M1)–TMSBD (M2) system and r1 = 0.036 and r2 = 0.065 for the AN (M1)–TMSBD (M2) system. The Q and e values of TMSBD determined from the reactivity ratios for the former copolymerization system were 2.34 and ?1.31, respectively. The resulting polymer and copolymers were readily desilylated with hydrochloric acid or tetrabutylammonium fluoride as catalyst to yield analogous polymers having carbonyl groups in the polymer chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号