首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starting from iodoalcohol 9 , the monoprotected dialdehyde 5 was synthesized (Scheme 2) and converted to 17 by reaction with oxo-phosphonate 15 (Scheme 3). The latter was prepared from 13 . Cyclisation of 17 to the target compound 18 failed. Also the attachment of thiol 22 to lactone 19 was unsatisfactory (Scheme 4). Therefore, the building blocks 28 and 29 were synthesized using diene 33 and diester 30 as starting material for 28 and 9 for 29 (Scheme 5 and 6). Hydroxy acid 28 was converted into formyl-ester 46 (Scheme 7). However, the condensation of its derivatives 48 and 49 with ‘Umpolung’ of the carbonyl reactivity was unsuccessful, probably due to steric hindrance.  相似文献   

2.
The Zip-reaction: A New Method for the Synthesis of Macrocyclic Polyaminolactams The 21- and 25-membered aminolactams 11 and 25 were synthesized from the 13-membered lactam 4 . To introduce the ring enlargement unit (a propylamino group) 4 was N-alkylated using acrylonitrile and the resulting product hydrogenated. Repetition of this reaction sequence gave 3 , which was converted in the presence of base in 90% yield to the ring-enlarged macrocyclic base 11 (Scheme 2). In a similar but stepwise synthesis consisting of two separate ring-enlargement reactions 4 was transformed to 11 via 13 (Scheme 4). Introducing three ringenlargement units into 4 the 25-membered aminolactam 25 was synthesized in 84% yield (Scheme 5). The mechanism of the ring-enlargement reaction is given in Scheme 3. In comparison to a zip-fastener or zipper this reaction is called “zipreaction”.  相似文献   

3.
Synthesis and Reactions of 8-membered Heterocycles from 3-Dimethylamino-2,2-dimethyl-2H-azirine and Saccharin or Phthalimide 3-Dimethylamino-2,2-dimethyl-2H-azirine ( 1 ) reacts at 0-20° with the NH-acidic compounds saccharin ( 2 ) and phthalimide ( 8 ) to give the 8-membered heterocycles 3-dimethylamino-4,4-dimethyl-5,6-dihydro-4 H-1,2,5-benzothiadiazocin-6-one-1,1-dioxide ( 3a ) and 4-dimethylamino-3,3-dimethyl-1,2,3,6-tetrahydro-2,5-benzodiazocin-1,6-dione ( 9 ), respectively. The structure of 3a has been established by X-ray (chap. 2). A possible mechanism for the formation of 3a and 9 is given in Schemes 1 and 4. Reduction of 3a with sodium borohydride yields the 2-sulfamoylbenzamide derivative 4 (Scheme 2); in methanolic solution 3a undergoes a rearrangement to give the methyl 2-sulfamoyl-benzoate 5 . The mechanism for this reaction as suggested in Scheme 2 involves a ring contraction/ring opening sequence. Again a ring contraction is postulated to explain the formation of the 4H-imidazole derivative 7 during thermolysis of 3a at 180° (Scheme 3). The 2,5-benzodiazocine derivative 9 rearranges in alcoholic solvents to 2-(5′-dimethylamino-4′,4′-dimethyl-4′H-imidazol-2′-yl) benzoates ( 10 , 11 ), in water to the corresponding benzoic acid 12 , and in alcoholic solutions containing dimethylamine or pyrrolidine to the benzamides 13 and 14 , respectively (Scheme 5). The reaction with amines takes place only in very polar solvents like alcohols or formamide, but not in acetonitrile. Possible mechanisms of these rearrangements are given in Scheme 5. Sodium borohydride reduction of 9 in 2-propanol yields 2-(5′-dimethylamino-4′,4′-dimethyl-4′H-imidazol-2′-yl)benzyl alcohol ( 15 , Scheme 6) which is easily converted to the O-acetate 16 . Hydrolysis of 15 with 3N HCl at 50° leads to an imidazolinone derivative 17a or 17b , whereas hydrolysis with 1N NaOH yields a mixture of phthalide ( 18 ) and 2-hydroxymethyl-benzoic acid ( 19 , Scheme 6). The zwitterionic compound 20 (Scheme 7) results from the hydrolysis of the phthalimide-adduct 9 or the esters 11 and 12 . Interestingly, compound 9 is thermally converted to the amide 13 and N-(1′-carbamoyl-1′-methylethyl)phthalimide ( 21 , Scheme 7) whose structure has been established by an independent synthesis starting with phthalic anhydride and 2-amino-isobutyric acid. However, the reaction mechanism is not clear at this stage.  相似文献   

4.
The tricyclic alcohols 3–7 , derived from the corresponding ketones 1 and 2 (Scheme 1), by action of acids underwent dehydration with skeletal rearrangements. Dehydration of 3 and 4 with POCl3/pyridine (procedure A) afforded the polycyclic hydrocarbons 9, 10 , and 12, 13 , respectively. With TsOH (procedure B), on the other hand, 3 and 4 gave homo-triquinacenes 10 and 14 respectively, as well as the polycyclic ethers 11 and 15 (Scheme 2). Hydrocarbon 9 (or 12 ) was converted into 10 FSO3H to the tertiary alcohol 16 (Scheme 4). Plausible mechanisms for these transformations are summarized in Scheme 8. Dehydration of the secondary alcohols 5 and 7 was effected by procedure A. While treatment of alcohol 5 with POCl3/pyridine yielded two isomeric hydrocarbons 17 and 18 , similar dehydration of its epimeric alcohol 7 afforded hydrocarbon 21 as the sole product. The tertiary alcohol 6 was dehydrated by both procedures to yield two isomeric hydrocarbons 19 and 20 (Scheme 5). Hydrocarbon 20 was converted into 19 by procedure B (mechanisms, Scheme 10). Reaction of ketone 2 with CF3COOH gave the addition product 22 converted into vinylsulfonyl fluorides 24 and 25 by treatment with FSO3H (Scheme 6). Homo-triquinacenes 10 and 14 reacted smoothly with 4-phenyl-1,2,4-triazoline-3,5-dione to give the ‘ene’-reaction products 26 and 27 , respectively.  相似文献   

5.
Ortho Esters with 2,4,10-Trioxaadamantane Structure as Carboxyl Protecting Group; Applications in the Synthesis of Substituted Carboxylic Acids by Means of Grignard Reagents The surprising stability of 2,4,10-trioxa-3-adamantyl derivatives 1 against nucleophilic substitution by organomagnesium compounds is discussed and shown to be caused by unfavourable stereoelectronic and steric factors governing the substitution of these cage compounds (Scheme 2). As a consequence, a number of Grignard reagents 2 containing the carboxyl group masked as 2,4,10-trioxa-3-adamantyl group could be prepared and have been reacted in a second step with various electrophiles (cf. Scheme 4). In the products 7–13 and 15b the carboxyl masking group is removed by mild acid hydrolysis and saponification (cf. Scheme 3) to yield the corresponding acids 16a–21a, 22 , and 23a. Acids 21a and 23a have been further transformed to give the macrocyclic lactones 24 and 26 , isolated from Galbanum oleo-gum-resin, and acid 22 to give 12-methyl-13-tridecanolide (25) , isolated from Angelica root oil. In addition 1-bromo-ω-(2,4, 10-trioxa-3-adamantyl)alkanes 1c and 1b have been used to synthesize (±)-methyl recifeiolate (29b) and pure cis-ambrettolic acid ((Z)- 32a ).  相似文献   

6.
1,5-Dipolar Electrocyclization of Acyl-Substituted ‘Thiocarbonyl-ylides’ to 1,3-Oxathioles The reaction of α-diazoketones 15a, b with 4,4-disubstituted 1,3-thiazole-5(4H)-thiones 6 (Scheme 3), adamantanethione ( 17 ), 2,2,4,4-tetramethyl-3-thioxocyclobutanone ( 19 ; Scheme 4), and thiobenzophenone ( 22 ; Scheme 5), respectively, at 50–90° gave the corresponding 1,3-oxathiole derivatives as the sole products in high yields. This reaction opens a convenient access to this type of five-membered heterocycles. The structures of three of the products, namely 16c, 16f , and 20b , were established by X-ray crystallography. The key-step of the proposed reaction mechanism is a 1,5-dipolar electrocyclization of an acyl-substituted ‘thiocarbonyl-ylide’ (cf. Scheme 6). The analogous reaction of 15a, b with 9H-xanthen-9-thione ( 24a ) and 9H-thioxanthen-9-thione ( 24b ) yielded α,β-unsaturated ketones of type 25 (Scheme 5). The structures of 25a and 25c were also established by X-ray crystallography. The formation of 25 proceeds via a 1,3-dipolar electrocyclization to a thiirane intermediate (Scheme 6) and desulfurization. From the reaction of 15a with 24b in THF at 50°, the intermediate 26 (Scheme 5) was isolated. In the crude mixtures of the reactions of 15a with 17 and 19 , a minor product containing a CHO group was observed by IR and NMR spectroscopy. In the case of 19 , this side product could be isolated and was characterized by X-ray crystallography to be 21 (Scheme 4). It was shown that 21 is formed – in relatively low yield – from 20a . Formally, the transformation is an oxidative cleavage of the C?C bond, but the reaction mechanism is still not known.  相似文献   

7.
On the Photochemistry of 2, 1-Benzisoxazoles (Anthraniles) and on the Thermal and Photochemical Decomposition of 2-Azido-acylbenzenes in Strongly Acidic Solution Anthranils 6 (Scheme 3), when irradiated with a mercury high-pressure lamp, in 96% sulfuric acid yielded, after work-up, 2-amino-5-hydroxy-acylbenzenes 8 and as side products 2-amino-3-hydroxy-acylbenzenes 9 (cf. Schemes 5–7 and Table 1). When C(5) of the anthranils 6 carries a methyl group a more complex reaction mixture is found after irradiation in 96% sulfuric acid (cf. Schemes 8 and 9): 3, 5-dimethyl-anthranil ( 6d ) yielded (after irradiation and acetylation) 2-acetyl- amino-5-methyl-acetophenone ( 15 ), 2-acetylamino-5-acetoxymethyl-acetophenone ( 18d ) and 2-acetylamino-5-acetoxy-6-methyl-acetophenone ( 12c ). The latter product was also formed after irradiation of 3, 4-dimethylanthranil ( 6c ) in 96% sulfuric acid. 3, 5, 7-Trimethyl-anthranil ( 6f ) formed under the same conditions 2-acetylamino-3, 5-dimethyl-acetophenone ( 15f ) and 2-acetylamino-5-acetoxymethyl-3-methyl-acetophenone ( 18f ). Since qualitatively the same product patterns were observed when the corresponding 2-azido-acetophenones 7 were decomposed in 96% sulfuric acid it is concluded that anthranilium ions (cf. 6b -H⊕, Scheme 11) on irradiation are transformed by cleavage of the N, O-bond into 2-acyl-phenylnitrenium ions (cf. 25b -H⊕) in the singlet ground state. The nitrenium ions are trapped directly by nucleophiles ( HSO ?4 in 96% sulfuric acid), thus, yielding the hydroxy-acetophenones 8 and 9 (Scheme 11). If C(5) is blocked by a methyl group a [1, 2]-rearrangement of the methyl group may occur (cf. Scheme 13) or loss of sulfuric acid can lead to quinomethane iminium ions (cf. 32-H⊕ , Scheme 13) which will react with HSO ?4 ions to yield, after hydrolysis and acetylation, the 5-acetoxymethyl substituted acetophenones 18d and 18f . It is assumed that the reduction products (2-acetylamino-acetophenones 15 ) are formed from the corresponding nitrenium ions in the triplet ground state.  相似文献   

8.
The preparation of novel electrophilic building blocks for the synthesis of enantiomerically pure compounds (EPC) is described. Thus, the 2-(tert-butyl)dioxolanones, -oxazolidinones, -imidazolidinones, and -dioxanones obtained by acetalization of pivalaldehyde with 2-hydroxy-, 3-hydroxy-, or 2-amino-carboxylic acids are treated with N-bromosuccinimide under typical radical-chain reaction conditions (azoisobuytyronitril/CCl4/reflux). Products of bromination in the α-position of the carbonyl group of the five-membered-ring acetals are isolated or identified ( 2, 5 , and 8 ; Scheme 1). The dioxanones are converted to 2H, 4H-dioxinones under these conditions ( 12 , 14 , 15 , 21 , and 22 ; Schemes 2 and 3). The products can be converted to chiral derivatives of pyruvic acid (methylidene derivatives 3 and 6 ) or of 3-oxo-butanoic and -pentanoic acid ( 16 and 23 ). The mechanism of the brominations is interpreted. The conversion of serine to enactiomcrically pure dioxanones 26–28 (Scheme 4) is also discussed.  相似文献   

9.
The synthesis of 5-acetamido-4-deoxyneuraminic acid ( 1 ) is described. Acetylation of a mixture of the epimeric triols 4 and 5 gave the tetraacetates 7 and 8 (Scheme 1). Ozonolysis of a mixture of these acetates followed by base-promoted β-elimination led to the (E) -configurated α,β-unsaturated keto ester 10 , which was hydrogenated to give the saturated keto ester 11 . Saponification of 11 and hydrolytic removal of the benzylidene group followed by anion-exchange chromatography gave the 5-acetamido-4-deoxyneuraminic acid ( 1 , Scheme 1 and 2). De-O-acetylation (NaOMe/MeOH) of the keto ester 11 gave a mixture of the tert-butyl ester 12 and the methyl ester 13 , which were converted to tert-butyl N-acetyl-4-deoxyneuraminate ( 14 ) and to methyl N-acetyl-4-deoxyneuraminate ( 15 ), respectively. Hydrogenolysis of the benzylidene acetal 11 followed by de-O-acetylation gave the pentahydroxy ester 16 .  相似文献   

10.
3-(Dimethylamino)-2,2-dimethyl-2H-azirine as an Aib Equivalent; Synthesis of Aib Oligopeptides 3-(Dimethylamino)-2,2-dimethyl-2H-azirine ( 1 ) reacts with carboxylic acids at 0–25° to give 2-acylamino-N,N,2-trimethylpropionamides ( = 2-acylamino-N,N-dimethylisobutyramide, acyl-Aib-NMe2) in excellent yields (Scheme 2 and 3). Examples of α-amino-, α-hydroxy-, and α-mercapto-carboxylic acids are given. On treatment with HCl in toluene, the terminal dimethylamide group is selectively converted to the corresponding carboxylic acid (→acyl-Aib) via an amide cleavage (Scheme 4 and 5); 1,3-oxazol-5(4H)-ones are intermediates of this amide hydrolysis. This reaction sequence has been used for the extension of peptide chains (Scheme 6). The synthesis of Aib-oligopeptides using this methodology is described (Scheme 8).  相似文献   

11.
A formal synthesis of (?)‐cephalotaxine ( 1 ) by means of a highly stereoselective radical carboazidation process is reported. The synthesis begins with the protected (S)‐cyclopent‐2‐en‐1‐ol derivative 10 and uses the concept of self‐reproduction of a stereogenic center (Schemes 5 and 6). For this purpose, the double bond adjacent to the initial chiral center in 10 is converted into an acetonide after stereoselective dihydroxylation. The initial alcohol function is used to build an exocyclic methylene group suitable for the carboazidation process 8 → 7 (Scheme 7). Finally the protected diol moiety is converted back to an alkene ( 14 → 15 → 6 ) and used for the formation of ring B via a Heck reaction ( 6 →(?)‐ 16 ; Scheme 8).  相似文献   

12.
In a preceding communication [5] it was shown that 1, 5-dimethyl-6-methylene-tricyclo[3.2.1.02,7]oct-3-en-8-one ( 2 ) and related tricyclic ketones are converted by strong acids (CF3COOH, FSO3H) into polymethylated tropylium salts with loss of carbon monoxide, e.g. the 1, 2, 4-trimethyltropylium ion 4 from 2 (Scheme 1). Under the influence of neat formic acid at 20°, 2 gives rise to ring-methylated phenylacetic acids, i.e. 2, 4, 5-trimethylphenylacetic acid ( 5 , main product) as well as smaller amounts of 2, 4, 6-and 2, 3, 5-trimethylphenylacetic acids ( 6, 7 resp.; Scheme 2). –On rearrangement of 2 in HCOOD, ca. 2 D-atoms are incorporated (formula d2-5) into the 2, 4, 5-trimethylphenylacetic acid. The tricyclic 15 , containing 3 methyl groups, gives 2, 3, 5, 6-tetramethylphenylacetic acid ( 11 ; Scheme 4) with formic acid; the isomeric tricyclic 16 , 2, 3, 4, 5-tetramethylphenylacetic acid ( 12 ; Scheme 5). From 1, 2, 4, 5-tetramethyl-6-methylene-tricyclo[3.2.1.02,7]oct-3-en-8-one ( 17 ) one obtains pentamethylphenylacetic acid ( 14 ; Scheme 6). Similarly from 18 , a phenylacetic acid derivative, most probably 4-ethyl-2, 5-dimethyl-phenylacetic acid ( 19 ; Scheme 17), has been obtained. –In no case was the formation of α-phenylpropionic acid derivatives observed, not even from the tricyclic 23 containing six methyl groups. From the tricyclic ketone 2 in 70% formic acid a trimethyl-cyclohepta-2, 4, 6-triene-1-carboxyclic acid with partial formula 24 , besides 2, 4, 5-trimethylphenylacetic acid ( 5 ), is formed. 24 remained practically unchanged on standing in neat formic acid and thus does not represent an intermediate product arising by the rearrangement of 2 in that solvent. On standing in methanolic sulfuric acid, tricyclic 2 furnishes the two stereioisomeric methanol-addition products Z- 26 and E- 26 (Scheme 10); these are converted into the phenylacetic acids 5 , 6 and 7 by neat formic acid. The conversion of 2 and related compounds into ring-polymethylated phenylacetic acids, represents a novel and rather complicated reaction. In our opinion the reaction paths represented in Schemes 12 and 18 are responsible for the conversion of 2 into the trimethylphenylacetic acids, compound 40 representing a key intermediate. Analogous reaction paths can be assumed for the other tricyclic ketone transformations. The use of shift reagents in the NMR. spectroscopy and the high-resolution gas-chromatography of the corresponding methyl esters proved particularly important for the analysis of the reaction mixtures. The majority of the polymethylated phenylacetic acids were independently synthesised by means of the Willgerodt-Kindler reaction (chap. 3.2.), whose course is strongly influenced by methyl groups in the ortho-positions of the acetophenone derivatives employed.  相似文献   

13.
Photochemistry of tricyclic β, γ-γ′, δ′-unsaturated ketones The easily available tricyclic ketone 1 (cf. Scheme 1) with a homotwistane skeleton yielded upon direct irradiation the cyclobutanone derivative 3 by a 1,3-acyl shift. Further irradiation converted 3 into the tricyclic hydrocarbon 4 . However, acetone sensitized irradiation of 1 gave the tetracyclic ketone 5 by an oxa-di-π-methane rearrangement. Again with acetone as a sensitizer the ketone 5 was quantitatively converted to the pentacyclic ketone 6 . The conversion 5 → 6 represents a novel photochemical 1,4-acyl shift. The possible mechanisms are discussed (see Scheme 7). The tricyclic ketone 2 underwent similar types of photoreactions as 1 (Scheme 2). Unlike 5 the tetracyclic ketone 9 did not undergo a photochemical 1,4-acyl shift. The epoxides 10 and 14 derived from the ketones 1 and 2 , respectively, underwent a 1,3-acyl shift upon irradiation followed by decarbonylation, and the oxa-di-π-methane rearrangement (Schemes 3 and 4). The diketone 18 derived from 1 behaved in the same way (Scheme 5). The tetracyclic diketone 21 cyclized very easily to the internal aldol product 22 under the influence of traces of base (Scheme 5). Upon irradiation the γ, δ-unsaturated ketone 24 underwent only the Norrish type I cleavage to yield the aldehyde 25 (Scheme 6).  相似文献   

14.
A new method for the smooth and highly efficient preparation of polyalkylated aryl propiolates has been developed. It is based on the formation of the corresponding aryl carbonochloridates (cf. Scheme 1 and Table 1) that react with sodium (or lithium) propiolate in THF at 25 – 65°, with intermediate generation of the mixed anhydrides of the arylcarbonic acids and prop‐2‐ynoic acid, which then decompose almost quantitatively into CO2 and the aryl propiolates (cf. Scheme 11). This procedure is superior to the transformation of propynoic acid into its difficult‐to‐handle acid chloride, which is then reacted with sodium (or lithium) arenolates. A number of the polyalkylated aryl propiolates were subjected to flash vacuum pyrolysis (FVP) at 600 – 650° and 10−2 Torr which led to the formation of the corresponding cyclohepta[b]furan‐2(2H)‐ones in average yields of 25 – 45% (cf. Scheme 14). It has further been found in pilot experiments that the polyalkylated cyclohepta[b]furan‐2(2H)‐ones react with 1‐(pyrrolidin‐1‐yl)cyclohexene in toluene at 120 – 130° to yield the corresponding 1,2,3,4‐tetrahydrobenz[a]azulenes, which become, with the growing number of Me groups at the seven‐membered ring, more and more sensitive to oxidative destruction by air (cf. Scheme 15).  相似文献   

15.
dl-Pumiliotoxin-C (4) was synthesized in a practical manner from trans-4-hexenal (9) . The key step 14 → 15 (Scheme 3) involves an intramolecular Diels-Alder reaction giving mainly the cis-fused indanols 15a , which were converted to the cis-fused ketone 16 . After Beckmann-rearrangement of 16 the octahydroquinolinone 7 was transformed to the lactim-ether 23 . (Scheme 7). Reaction of 23 with propylmagnesium bromide followed by hydrogenation furnished dl- 4 in a highly stereoselective fashion.  相似文献   

16.
Irradiation of the tricyclic vinylcyclopropane 3 and Fe(CO)5 resulted in the formation of the s?,π-bonded iron complex 7 and the π,π-bonded iron complex 8 (Scheme 2). Complex 8 was easily degraded with silica gel to give hydrocarbon 9 , which reproduced 8 by photolysis in the presence of Fe(CO)5. Photolysis of 7 afforded a mixture of 3 (23%), 9 (27,5%), and three other hydrocarbons. Oxidative degradation of 7 with ceric ammonium nitrate in methanol gave the dimethoxy-hydrocarbon 10 . - The tricyclic hydrocarbon 3 isomerized thermally to the bicyclic hydrocarbon 11 (with CH3? C(9) in an exo position) via a homosigmatropic [1,5]-H-shift. On the other hand, 3 was converted into the other isomer 14 (with CH3? C(9) in an endo position) by action of Mo(CO)6 or TsOH. Both isomers 11 and 14 reacted with 4-phenyl-1,2,4-triazoline-3,5-dione to give the isomeric Diels-Alder adducts 12 and 15 , respectively, which were photochemically converted into the cage compounds 13 and 16 , respectively (Scheme 3). - Photochemical reaction of the tricyclic vinylcyclopropane 6 with Fe(CO)5 gave the σ,π-bonded iron complexes 17 and 18 . Heating of 17 at 80° resulted in a loss of one mol of carbon monoxide to give 18 in quantitative yield. Oxidative degradation of 17 with ceric ammonium nitrate in ethanol afforded the polycyclic lactones 19 and 20 by a novel type of reaction (Scheme 4). - The tricyclic ketone 21 was thermally converted into the α,β-unsaturated ketone 22 via a homosigmatropic [1,5]-H-shift. The configuration at C(7) of 22 was confirmed to be same as that of 11 (CH3? C(9) in an exo position) by chemical conversions: 22 was reduced with NaBH4 to alcohol 23 which, in turn, was dehydrated with POCl3/pyridine to 11 (Scheme 5). Reaction of ketone 21 with Mo(CO)6 gave the α,β-unsaturated ketone 25 and a cage compound X , whose structure was not fully elucidated. - Reaction of the polycyclic epoxide 26 with Fe2(CO)9 or Mo(CO)6 yielded the allyl alcohol 27 in a novel type of reaction. The epoxides 29 and 32 were similarly converted into the corresponding allyl alcohols 30 and 33 , respectively (Scheme 6).  相似文献   

17.
A thermal Intermolecular [2 + 2]-Cycloaddition of an Allenyl-Allyl-Benzene; Synthesis of Allenylbenzenes via Acid-Catalyzed Dienol-Benzene Rearrangement A few years ago, it has been shown that the acid-catalyzed dienol-benzene rearrangement of 2-propinyl-substituted cyclohexadienols is a convenient synthesis for allenyl-substituted benzene derivatives. The cyclohexadienols 20 and 21 were prepared via C-alkylation of the corresponding phenols with 2-propinylbromide (Scheme 3), followed by reduction of the cyclohexadienone 13 and 17 with LiAlH4. Treatment of 20 and 21 with p-toluenesulfonic acid in ether at ?15°) yielded the desired allenyl benzenes 8 and 9 , respectively, via [3,4]-sigmatropic rearrangements (Scheme 4). The 2-propinylbenzenes 22–24 , formed via [1,2]-sigmatropic shift of the 2-propinylgroup, were found as by-products. Thermolysis of allenyl benzene 8 in decane yielded two bicyclic ( 25 and 26 ) and two tricyclic products ( 27 and 28 ; Scheme 5). For the formation of 25 and 26 , a pericyclic reaction mechanism (Scheme 6) as well as a mechanism via biradical intermediates (Scheme 7) is discussed. A [2 + 2]-cycloaddition of the α,β-allenic and the allylic C,C-double bound of 8 led to the tricyclic products 27 and 28 (Scheme 9). All attempts to realize a [1,7]-sigmatropic H-shift in the allene 9 failed so far, and the starting material underwent a rapid polymerisation.  相似文献   

18.
The isothiazole 1 is not only a dipolarophile but also a reactive and versatile dienophile: especially with oxy-substituted ‘donor’ 1,3-butadienes, it readily combines in Diels-Alder fashion; the regiospecificity of the addition is governed by the carbonyl group of the dienophile, whereas the sulfo group can be ignored for the purpose of predicting regioselectivity. upon dehydrobromination of the [4 + 2] adducts with DBN, the cycloaromatization process is completed, generating saccharin-like compounds. Besides the parent substance saccharin ( 14b ), several hydroxylated derivatives have been synthesized by this new method; two of them, i.e. 16b and 18c , are of potential interest as non-nutritive sweetening agents (Scheme 3). In an alternative version of this principle, the isothiazole 22 is reacted with the renowned oxazole 21 , affording, after acid-promoted rearrangement, pyrido-annelated isothiazoles 25 (Scheme 4). Since both processes generate saccharin-related structures, they may serve in syntheses of oxicams and analogs of ipsapirone. To demonstrate the viability of the approach, one representative of each series, i.e. 26a and 29 , has been converted to an oxicam ( 7b and 31c , resp.; Scheme 5).  相似文献   

19.
A versatile process for the preparation of a number of 3-thio-substituted furans 1–4 is described. These products have very low odor thresholds and are thus potent flavor compounds. Fur-3-yl thiocyanates 10a , b as well as other S-containing analogues ( 2b , 7a , b , and 8 ) were prepared by a Michael-type addition of thiocyanic acid, thioacetic acid, alakanethiols, and sodium thiosulfate to alkynones 6 or 15 , followed by cyclization (Schemes 3 and 4). The thiocyanates 10a, b were converted to mixed disulfides 3 , symmetric disulfides 4 , thioethers 2 , and thiols 1 , using ‘hard’ or ‘soft’ nucleophiles or reducing agents, respectively (Scheme 6).  相似文献   

20.
The bromination of dimethyl 8‐methoxy‐1,6,10‐trimethylheptalene‐4,5‐dicarboxylate ( 6 ; Scheme 2) with N‐bromosuccinimide (NBS) in N,N‐dimethylformamide (DMF) leads in acceptable yields to the corresponding 9‐bromoheptalenedicarboxylate 10 (Table 1). Ether cleavage of 6 with chlorotrimethylsilane (Me3SiCl)/NaI results in the formation of oxoheptalenedicarboxylate 13 in good yield (Scheme 4). The latter can be acetyloxylated to the (acetyloxy)oxoheptalenedicarboxylate 14 with Pb(OAc)4 in benzene (Scheme 5). Oxo derivative 14 , in turn, can be selectively O‐methylated with dimethyl sulfate (DMS) in acetone to the (acetyloxy)methoxyheptalenedicarboxylates 15 and 15′ (Scheme 6). The AcO group of the latter can be transformed into a benzyl or methyl ether group by treatment with MeONa in DMF, followed by the addition of benzyl bromide or methyl iodide (cf. Scheme 9). Reduction of the ester groups of dimethyl 7,8‐dimethoxy‐5,6,10‐trimethylheptalene‐1,2‐dicarboxylate ( 25′ ) with diisobutylaluminium hydride (DIBAH) in tetrahydrofuran (THF) leads to the formation of the corresponding dimethanol 26′ , which can be cyclized oxidatively (IBX, dimethyl sulfoxide) to 8,9‐dimethoxy‐6,7,11‐trimethylheptaleno[1,2‐c]furan ( 27 ; Scheme 11).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号