首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diazotization of α-amino acids in 48:52 (w/w) hydrogen fluoride/pyridine along with excess of potassium halide results in the corresponding α-halocarboxylic acids in good to excellent yields (Table 1 and 2).  相似文献   

2.
Selective Amide Cleavage in Peptides Containing α,α-Disubstituted α-Amino Acids A new synthesis of dipeptides with terminal α,α-disubstituted α-amino acids, using 2,2-disubtituted 3-amino-2H-azirines 1 as amino-acid equivalents, is demonstrated. The reaction of 1 with N-protected amino acids leads to the corresponding dipeptide amides in excellent yield. It is shown that the previously described selective hydrolysis (HCl, toluene, 80°, or HCl, MeCN/H2O, 80°) of the terminal amide group results in an extensive epimerization of the second last amino acid. An acid-catalyzed enolization in the intermediate oxazole-5(4H)-ones is responsible for this loss of configurational integrity. In the present paper, a selective hydrolysis of the terminal amide group under very mild conditions is described: In 3N HCl (THF/H2O 1:1), the dipeptide N,N-dimethylamides or N-methytlanilides are hydrolized at 25–35° to the optically pure dipeptides in very good yield.  相似文献   

3.
Molecular weight distributions determined by gel permeation chromatography demonstrate that α-methylstyrene copolymerizes with both β-pinene and styrene, forming both bi- and terpolymers. The composition of precipitated polymer versus crude polymer, as determined by nuclear magnetic resonance, suggests that β-pinene and styrene also copolymerize. Extraction of the latter bipolymer of β-pinene and styrene with acetone gives only a small amount of insoluble β-pinene homopolymer, confirming that β-pinene and styrene copolymerize in m-xylene. GPC analysis shows that each copolymer contains some homopolymer. A comparison of M n with molecular weight calculated from NMR analysis, assuming chain transfer to solvent, indicates that chain transfer is the predominant method of forming dead polymer. The carbonium ions of the growing chain tend to transfer to solvent with increasing ease in the order β-pinene, styrene, and α-methylstyrene.  相似文献   

4.
The four α,α,α, β,β,β,-hexamethyl α-hydrogen Coα, Coβ-dicyanocobyrinates 2b, d–f , with a free b-, d-, e-, and f-propionic-acid function, respectively, were prepared by partial hydrolysis of heptamethyl Coα, Coβ-dicyanocobyrinate (cobester; 1 ) in aqueous sulfuric acid. The cobester monoacids 2b, d–f were obtained as a ca. 1:1:1:1 mixture which was separated. The monoacids were purified by chromatography and isolated in crystalline form. The position of the free propionic-acid function was determined by an extensive analysis of 2b, d–f using 2D-NMR techniques; an analysis of the C,H-coupling network topology resulted in an alternative assignment strategy for cobyrinic-acid derivatives, based on pattern recognition. Additional information on the structure of the most polar of the four hexamethyl cobyrinates, of the b-isomer 2b , was also obtained in the solid state from a single-crystal X-ray analysis. Earlier structural assignments based on 1D-NMR spectra of the corresponding regioisomeric monoamides 3b, d–f (obtained from crystalline samples of the monoacids 2b, d–f ) were confirmed by the present investigations.  相似文献   

5.
The 147 nm photolysis of 3,3 dimethylbut-1-ene leads mainly to the formation of very hot (?375 kJ/mol) α,α-dimethallyl radicals. On the other hand, that of 3-methyl-cis-and trans-pentene-2, as well as that of 2,3-dimethylbut-1-ene is a source of very hot α,β-dimethallyl radicals. These allylic radicals are coolled down using pressure and are allowed to combine with available methyl radicals. From the formation of various C6H12 products, it is concluded that the very hot α,α- radical isomerizes towards the α,β-structure at low pressures and vice versa. The equilibrium constant of the following process has been evaluated to be 1.72 ± 0.30.   相似文献   

6.
Rearrangement of α-Halogen- to α′-Halogen-cyclobutanones, Key Step of a Highly Versatile Synthesis of Pyrethroids α-Halogenocyclobutanones, which are readily available by [2 + 2]-cycloaddition of haloketenes to terminal olefins (e. g. 5 → 6 ), undergo an efficient and stereoselective cine-rearrangement to α′-halogenocyclobutanones in the presence of catalysts such as tertiary amines, HX acids or quaternary ammonium salts (e. g. 6 → 7 , Table 1). Preparative as well as mechanistic aspects of the cine-rearrangement are discussed. The 2,4-cis-disubstituted cyclobutanones 7–32 thus formed represent valuable intermediates in a new synthesis of pyrethroids 1 . The X-ray structure of 2-chloro-4-(2,2,2-trichloroethyl)-3,3-dimethylcyclobutanone ( 7 ), the most important precursor of cis- 3 (X = Cl) shows the following features: a puckered cyclobutanone ring (dihedral angle 31°), 2,4-cis-di-pseudoequatorial arrangement of the chloro and trichloroethyl substituents, and an endo-deviation (0.225 Å; 11°) of the carbonyl O-atom from the plane formed by C(1), C(2) and C(4) (Fig. 2).  相似文献   

7.
Tertiary α-carbomethoxy-α,α-dimethyl-methyl cations a have been generated by electron impact induced fragmentation from the appropriately α-substituted methyl isobutyrates 1–4. The destabilized carbenium ions a can be distinguished from their more stable isomers protonated methyl methacrylate c and protonated methyl crotonate d by MIKE and CA spectra. The loss of I and Br˙ from the molecular ions of 1 and 2, respectively, predominantly gives rise to the destabilized ions a, whereas loss of Cl˙ from [3]+ ˙ results in a mixture of ions a and c. The loss of CH3˙ from [4]+˙ favours skeletal rearrangement leading to ions d. The characteristic reactions of the destabilized ions a are the loss of CO and elimination of methanol. The loss of CO is associated by a very large KER and non-statistical kinetic energy release (T50 = 920 meV). Specific deuterium labelling experiments indicate that the α-carbomethoxy-α,α-dimethyl-methyl cations a rearrange via a 1,4-H shift into the carbonyl protonated methyl methacrylate c and eventually into the alkyl-O protonated methyl methacrylate before the loss of methanol. The hydrogen rearrangements exhibit a deuterium isotope effect indicating substantial energy barriers between the [C5H9O2]+ isomers. Thus the destabilized carbenium ion a exists as a kinetically stable species within a potential energy well.  相似文献   

8.
Under a variety of conditions it has not been possible to induce the free-radical-initiated homopolymerization of α-methacrylophenone (α-MAP). The only product isolated from such efforts was the Diels-Alder dimer of the monomer. A Mayo-Lewis plot of the free-radical copolymerization of α-MAP and styrene shows considerable scatter but the copolymer composition indicates that an α-MAP unit can add to itself. These results have been ascribed to a penultimate effect. α-MAP is homopolymerized by dimsylsodium or n-butyllithium. Attempted copolymerization of α-map and styrene with n-butyllithium produces >95% α-MAP. Unexpectedly, α-MAP does not homopolymerize with lithium dispersion, but does react in the presence of styrene to give product containing a relatively small amount of α-MAP.  相似文献   

9.
The subsidiary integral W (l, m, n; α, β, γ) is a key integral that appears in the variational calculation of a three‐electron atomic system using Hylleraas coordinates. For the case where the ratio α/(α + β + γ) ~ 1, an important special situation that may occur in the evaluation of the Bethe logarithm, existing approaches for calculating the W integral become impractical due to the problem of slow convergence. In this article, we present a computationally efficient and numerical stable method, in which the W integral can be expressed in terms of either a finite series or a finite recursion relation. Numerical tests are given. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Lipase-catalyzed ring-opening polymerization of α-methyl-substituted medium-size lactones, α-methyl-δ-valerolactone and α-methyl-ε-caprolactone, were carried in bulk. Immobilized lipase derived from Candida antarctica is active in the polymerization of both monomers. The polymerization proceeds under mild reaction conditions to give the corresponding aliphatic polyester having a hydroxy group at one end and a carboxylic acid group at the other.  相似文献   

11.
α-Zeacarotene, isolated from corn gluten, has been shown to have the same absolute configuration at C(6) as natural (+)-α-carotene. Chiroptical comparison was made with the derived α-apo-8-carotenole. The same chirality has been found with δ-, ε-carotene, lutein, semi-α-carotenone, zeinoxanthin, crocoxanthin and β,ε-carotene-2-ol. Therefore, biological cyclisation of the acyclic precursor to the α-ionone ring seems to be stereospecific and is probably different (enantiomeric) to that leading to β-ionone derivatives. Cotton effects of carotenoids have for the first time been measured in the visible region. All carotenoids examined with C(6)-R-chirality show a positive effect at their longest absorption band.  相似文献   

12.
By heating with iron powder at 120–150° some γ-bromo-α, β-unsaturated carboxylic methyl esters, and, less smothly, the corresponding acids, were lactonized to Δ7alpha;-butenolides with elimination of methyl bromide. The following conversions have thus been made: methyl γ-bromocrotonate ( 1c ) and the corresponding acid ( 1d ) to Δα-butenolide ( 8a ), methyl γ-bromotiglate ( 3c ) and the corresponding acid ( 3d ) to α-methyl-Δα-butenolide ( 8b ), a mixture of methyl trans- and cis-γ-bromosenecioate ( 7c and 7e ) and a mixture of the corresponding acids ( 7d and 7f ) to β-methyl-Δα-butenolide ( 8c ). The procedure did not work with methyl trans-γ-bromo-Δα-pentenoate ( 5c ) nor with its acid ( 5d ). Most of the γ-bromo-α, β-unsaturated carboxylic esters ( 1c, 7c, 7e and 5c ) are available by direct N-bromosuccinimide bromination of the α, β-unsaturated esters 1a, 7a and 5a ; methyl γ-bromotiglate ( 3c ) is obtained from both methyl tiglate ( 3a ) and methyl angelate ( 4a ), but has to be separated from a structural isomer. The γ-bromo-α, β-unsaturated esters are shown by NMR. to have the indicated configurations which are independent of the configuration of the α, β-unsaturated esters used; the bromination always leads to the more stable configuration, usually the one with the bromine-carrying carbon anti to the carboxylic ester group; an exception is methyl γ-bromo-senecioate, for which the two isomers (cis, 7e , and trans, 7d ) have about the same stability. The N-bromosuccinimide bromination of the α,β-unsaturated carboxylic acids 1b , 3b , 4b , 5b and 7b is shown to give results entirely analogous to those with the corresponding esters. In this way γ-bromocrotonic acid ( 1 d ), γ-bromotiglic acid ( 3 d ), trans- and cis-γ-bromosenecioic acid ( 7d and 7f ) as well as trans-γ-bromo-Δα-pentenoic acid ( 5d ) have been prepared. Iron powder seems to catalyze the lactonization by facilitating both the elimination of methyl bromide (or, less smoothly, hydrogen bromide) and the rotation about the double bond. α-Methyl-Δα-butenolide ( 8b ) was converted to 1-benzyl-( 9a ), 1-cyclohexyl-( 9b ), and 1-(4′-picoly1)-3-methyl-Δα-pyrrolin-2-one ( 9 c ) by heating at 180° with benzylamine, cyclohexylamine, and 4-picolylamine. The butenolide 8b showed cytostatic and even cytocidal activity; in preliminary tests, no carcinogenicity was observed. Both 8b and 9c exhibited little toxicity.  相似文献   

13.
The kinetics of α-methylene-γ-butyrolactone (α-MBL) homopolymerization was investigated in N,N-dimethylformamide (DMF) with azobis(isobutyronitrile) as initiator. The rate of polymerization (Rp) was expresed by Rp = k[AIBN]0.54[α-MBL]1.1 and the overall activation energy was calculated as 76.1 kJ/mol. Kinetic constants for α-MBL polymerization were obtained as follows: kp/kt1/2 = 0.161 L1/2 mol?1/2·s?1/2; 2fkd = 2.18 × 10?5 s?1. The relative reactivity ratios of α-MBL(M2) copolymerization with styrene (r1 = 0.14, r2 = 0.87) were obtained. Applying the Qe scheme led to Q = 2.2 and e = 0.65. These Q and e values for α-MBL are higher than those for MMA  相似文献   

14.
The mass spectra of some α-substituted phenyl-α,α′-dimethoxyl ketones (compounds 1) and their 2,4-dinitrophenylhydrazones (compounds 2) and semicarbazones (compounds 3) have been studied. The characteristic fragments at m/z (M ? 73) from compounds 1, m/z (M ? 253) from compounds 2 and m/z (M ? 130) from compounds 3 are abundant and proposed to be [ArCROCH3]+. Fragmentations yielding [M+ ? 49] from compounds 2 are abnormal and probably involve the methoxyl and nitro groups. The intense peak at m/z 130 due to [CH3OCH2CNNHCONH2]+ from compounds 3 corresponds to α-cleavage of the molecular ion. Some other fragments from these new compounds are interpreted in this paper.  相似文献   

15.
A substitute for the Darzens glycidic ester synthesis for converting unsaturated ketones or aldehydes into the homologated β,γ- or α,β-unsaturated aldehydes employing sulfur ylides is described. The carbonyl group is converted into the unsaturated oxirane which is then rearranged to the new aldehyde. High yields of isomerically pure aldehydes are available by this method and the process is of practical importance in the conversion of β-ionone into the β-C14-aldehyde, a key intermediate in the Isler synthesis of vitamin A. The efficient preparation of α- and β-cyclocitral by the novel process is also described.  相似文献   

16.
The mass spectra of a series of N‐aryl α,β‐unsaturated γ‐lactams were studied. Besides the molecular ion, the three characteristic fragments such as [M+‐29], [M+‐55], and [M+‐82] were commonly found in a series of N‐Aryl α,β‐unsaturated γ‐lactams in EI/MS. Further more the mechanism for the interpretation of these fragments is also de scribed.  相似文献   

17.
C-Alkylation of some α-acylamino ketones were achieved with alkyl halides by means of sodium ethoxide in ethanol. The present paper deals with the C-alkylation of N,N-diformylamino ketones and the difference in stability of the amide group.  相似文献   

18.
The syntheses of a number of N-substituted α-amidinium thiolsulfates, CH2(S2O3?)-C(=NH2+)NH(CH2)nR are described, where n was varied from 1 to 3 and R represents such heteroaryl groups as 2-furyl, 2-thienyl, 3-indolyl and 2-, 3- and 4-pyridyl. The preparation of S-(2-imidazolinemethyl)thiolsulfuric acid, as an example of an N, N'-disubstituted α-amidinium thiolsulfate, is also reported.  相似文献   

19.
α-Methylene-N-methylpyrrolidone (α-MMP) was synthesized and homopolymerized by bulk and solution methods. The poly(α-MMP) is readily soluble in water, methanol, methylene chloride, and dipolar aprotic solvents at room temperature. Thermogravimetric analysis of poly(α-MMP) showed a 10% weight loss at 330°C in air. The kinetics of α-MMP homopolymerization and copolymerization were investigated in acetonitrile, using azobisisobutyronitrile (AIBN) as an initiator. The rate of polymerization Rp could be expresed by Rp = k[AIBN]0.49[α-MMP]1.3. The overall activation energy was calculated to be 84.1 kj/mol. The relative reactivity ratios of α-MMP (M2) copolymerization with methyl methacrylate (r1 = 0.59, r2 = 0.26) in acetonitrile were obtained. Applying the Q-e scheme led to Q = 2.18 and e = 1.77. These Q and e values are larger than those for acrylamide derivatives.  相似文献   

20.
A new route to completely protected α-methylated α-amino acids starting from alanine is described (see Scheme). These derivatives, which are obtained via base-catalyzed opening of the oxazolidinones (2S,4R)- and (2R,4S)- 2 , can be directly employed in peptide synthesis. The synthesis of both enantiomers of Z-protected α-methylaspartic acid β-(tert-butyl)ester (O4-(tert-butyl) hydrogen 2-methylaspartates (R) or (S)- 4a ), α-methyl-glutamic acid γ-(tert-butyl) ester (O5-(tert-butyl) hydrogen 2-methylglutamate (R)- or (S)- 4b ), and of Nε-bis-Boc-protected α-methyllysine (N6,N6-bis[(tert-butyloxy)carbonyl]-2-methyllysine (R)- or (S)- 4c ) is described in full detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号