首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Several \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm C}_{{\rm 4}} {\rm H}_{{\rm\ 8}} } \right]_{}^{_.^ + } $\end{document} ion isomers yield characteristic and distinguishable collisional activation spectra: \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm 1-butene} } \right]_{}^{_.^ + } $\end{document} and/or \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm 2-butene} } \right]_{}^{_.^ + } $\end{document} (a-b), \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm isobutene} } \right]_{}^{_.^ + } $\end{document} (c) and [cyclobutane]+ (e), while the collisional activation spectrum of \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm methylcyclopropane} } \right]_{}^{_.^ + } $\end{document} (d) could also arise from a combination of a-b and c. Although ready isomerization may occur for \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm C}_{{\rm 4}} {\rm H}_{{\rm 8}} } \right]_{}^{_.^ + } $\end{document} ions of higher internal energy, such as d or ea, b, and/or c, the isomeric product ions identified from many precursors are consistent with previously postulated rearrangement mechanisms. 1,4-Eliminations of HX occur in 1-alkanols and, in part, 1-buthanethiol and 1-bromobutane. The collisional activation data are consistent with a substantial proportion of 1,3-elimination in 1- and 2-chlorobutane, although 1,2-elimination may also occur in the latter, and the formation of the methylcycloprpane ion from n-butyl vinyl ether and from n-butyl formate. Surprisingly, cyclohexane yields the \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm linear butene} } \right]_{}^{_.^ + } $\end{document} ions a-b, not \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm cyclobutane} } \right]_{}^{_.^ + } $\end{document}, e.  相似文献   

2.
Evidence is presented for the gas phase generation of at least eight stable isomeric [C2H7O2]+ ions. These include energy-rich protonated peroxides (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_2 {\rm O}\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (e), \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm (H)OH} $\end{document} (f) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm O}\mathop {\rm O}\limits^{\rm + } {\rm (H)CH}_{\rm 3} {\rm (g)),} $\end{document} (g)), proton-bound dimers (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH = O} \cdot \cdot \cdot \mathop {\rm H}\limits^{\rm 3} \cdot \cdot \cdot {\rm OH}_{\rm 2} $\end{document} (h) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH2 = O} \cdot \cdot \cdot \mathop {\rm H}\limits^{\rm + } \cdot \cdot \cdot {\rm HOCH}_{\rm 3} $\end{document} (i)) and hydroxy-protonated species (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} {\rm (OH)CH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} (a), $\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH(OH)}\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (b) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm OCH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (c)). The important points of the present study are (i) that these ions are prevented by high barriers from facile interconversion and (ii) that both electron-impact- and proton-induced gas phase decompositions seem to proceed via multistep reactions, some of which eventually result in the formation of proton-bound dimers.  相似文献   

3.
From a combination of isotopic substitution, time-resolved measurements and sequential collision experiments, it was proposed that whereas ionized methyl acetate prior to fragmentation rearranges largely into \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 \mathop {\rm C}\limits^ + ({\rm OH}){\rm O}\mathop {\rm C}\limits^{\rm .} {\rm H}_2 $\end{document}, in contrast, methyl propanoate molecular ions isomerize into \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^. {\rm H}_2 {\rm CH}_2 \mathop {\rm C}\limits^ + ({\rm OH}){\rm OCH}_3 $\end{document}. Metastably fragmenting methyl acetate molecular ions are known predominantly to form H2?OH together with \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 - \mathop {\rm C}\limits^ + = {\rm O} $\end{document}, whereas ionized methyl propanoate largely yields H3CO˙ together with \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 {\rm CH}_2 - \mathop {\rm C}\limits^ + = {\rm O} $\end{document}. The observations were explained in terms of the participation of different distonic molecular ions. The enol form of ionized methyl acetate generates substantially more H3CO˙ in admixture with H2?OH than the keto tautomer. This is ascribed to the rearrangement of the enol ion to the keto form being partially rate determining, which results in a wider range of internal energies among metastably fragmenting enol ions. Extensive ab initio calculations at a high level of theory would be required to establish detailed reaction mechanisms.  相似文献   

4.
The mechanism of the crosslinking reaction in the copolymerization of poly(ethylene fumarate) and styrene has been studied by using partial conversion number-average molecular weights and viscosities. In dilute solution the reaction is mainly the formation of intramolecular crosslinks, illustrated by a reduced dependence of \documentclass{article}\pagestyle{empty}\begin{document}$\overline{\overline M}_n$\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$[\overline{\overline \eta}]$\end{document} on conversion. Increasing the monomer concentrations increases the contribution from intermolecular reactions and gives a much greater dependence of \documentclass{article}\pagestyle{empty}\begin{document}$\overline{\overline M}_n$\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$[\overline{\overline \eta}]$\end{document} on conversion.  相似文献   

5.
Ab initio molecular orbital calculations with split-valence plus polarization basis sets and incorporating electron correlation and zero-point energy corrections have been used to examine possible equilibrium structures on the [C2H7N]+˙ surface. In addition to the radical cations of ethylamine and dimethylamine, three other isomers were found which have comparable energy, but which have no stable neutral counterparts. These are \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm .} {\rm H}_{\rm 2} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3} $\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm .} {\rm H}\mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3} $\end{document}and\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 2} \mathop {\rm C}\limits^. {\rm H}_{\rm 2} {\rm }, $\end{document} with calculated energies relative to the ethylamine radical cation of ?33, ?28 and 4 kJ mol?1, respectively. Substantial barriers for rearrangement among the various isomers and significant binding energies with respect to possible fragmentation products are found. The predictions for \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^. {\rm H}_{\rm 2} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^ + {\rm H}_{\rm 3} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm .} {\rm H}\mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3}$\end{document} are consistent with their recent observation in the gas phase. The remaining isomer, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 2} \mathop {\rm C}\limits^{\rm .} {\rm H}_{\rm 2} {\rm },$\end{document}is also predicted to be experimentally observable.  相似文献   

6.
The role of the intrinsic viscosity [η] as separation parameter in gel permeation chromatography (GPC) was studied for dextrans (from Leuconostoc mesenteroids B512) dissolved in water with deactivated silicagel (Porasil) as the column-filling material. For that purpose specific viscosities of dextran fractions eluted by GPC were measured as a function of the elution volume v. Provided that the elution volumes are corrected for zonal spreading, they are related to the intrinsic viscosities in an unambiguous way, probably reflecting a unique relationship between degree of branching and molecular weights. This was further investigated by developing an iteration method to prepare two calibration curves γ(v) and g(v), respectively, relating ln[\documentclass{article}\pagestyle{empty}\begin{document}$\left[ {\bar \eta } \right]$\end {document}] and InM (M is the molecular weight) to v. It required that the weight-average molecular weight M w, the number-average molecular weight M n, and the average intrinsic viscosity [\documentclass{article}\pagestyle{empty}\begin{document}$\left[ {\bar \eta } \right]$\end {document}] for a number of dextran samples (broad distributions) be previously known. The calibration curves found lead to consistent values of the above-mentioned averages. Moreover, they allow-establishment of the [\documentclass{article}\pagestyle{empty}\begin{document}$\left[ {\bar \eta } \right]$\end {document}]-M relationship over the range 5000 < M < 500,000.  相似文献   

7.
The radical anions of 1,8-diphenylnaphthalene ( 1 ) and its decadeuterio-(D10- 1 ) and dimethyl-( 2 ) derivatives, as well as those of [2.0.0] (1,4)benzeno(1,8)naphthaleno(1,4)benzenophane ( 3 ) and its olefinic analogue ( 4 ) have been studied by ESR and ENDOR spectroscopy, At a variance with a previous report, the spin population in \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {1}^{-\kern-4pt {.}} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {2}^{-\kern-4pt {.}} $\end{document} is to a great extent localized in the naphthalene moiety. A similar spin distribution is found for \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {3}^{-\kern-4pt {.}} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {4}^{-\kern-4pt {.}} $\end{document}. The ground conformations of \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {1}^{-\kern-4pt {.}} $\end{document}-\documentclass{article}\pagestyle{empty}\begin{document}$ \rm {4}^{-\kern-4pt {.}} $\end{document} are chiral of C2 symmetry. For \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {1}^{-\kern-4pt {.}} $\end{document}, an energy barrier between these conformations and the angle of twist about the bonds linking the naphthalene moiety with the phenyl substituents were estimated as ca. 50 kJ/mol and ca. 45°, respectively. The radical trianions of 1 , D10- 1 , and 2 , have also been characterized by their hyperfine data. In \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {1}^{3-\kern-4pt {.}} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {2}^{3-\kern-4pt {.}} $\end{document}, the bulk of the spin population resides in the two benzene rings so that these radical trianions can be regarded as the radical anions of ‘open-chain cyclophanes’ with a fused naphthalene π-system bearing almost two negative charges. The main features of the spin distribution in both \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {1}^{-\kern-4pt {.}} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {1}^{3-\kern-4pt {.}} $\end{document} are correctly predicted by an HMO model of 1 .  相似文献   

8.
In the gas phase, cis,trans-1,5-cyclooctadiene (\documentclass{article}\pagestyle{empty}\begin{document}$ {\mathop 1\limits_\sim} $\end{document}) undergoes a unimolecular rearrangement to cis,cis-1,5-cyclooctadiene (\documentclass{article}\pagestyle{empty}\begin{document}$ {\mathop 2\limits_\sim} $\end{document}) and bimolecular formation of dimers \documentclass{article}\pagestyle{empty}\begin{document}$ {\mathop 3\limits_\sim}-{\mathop 5\limits_\sim} $\end{document} $\end{document}. The Arrhenius parameters are EA = 135.7 ± 4.4 kJ mole?1 and log(A/sec?1) = 12.9 ± 0.6 for the first reaction and EA = 66.1 ± 6.0 kJ mole?1 and log[A/(liter mole?1 sec?1)] = 5.5 ± 0.8 for the second reaction. Using thermochemical kinetics, the first reaction is shown to proceed via a rate determining Cope rearrangement of \documentclass{article}\pagestyle{empty}\begin{document}$ {\mathop 1\limits_\sim} $\end{document} to cis? 1,2-divinylcyclobutane (\documentclass{article}\pagestyle{empty}\begin{document}$ {\mathop 6\limits_\sim} $\end{document}), EA = 136.2 - 4.4 kJ mole?1 and log(A/sec?1) = 13.0 ± 0.6. The corresponding back reaction, \documentclass{article}\pagestyle{empty}\begin{document}$ {\mathop 6\limits_\sim}{\rightarrow}{\mathop 1\limits_\sim} $\end{document}, which was investigated separately, shows EA = 110.2 ± 1.2 kJ mole?1 and log(A/sec?1) = 10.9 ± 0.2. The heat of formation of \documentclass{article}\pagestyle{empty}\begin{document}$ {\mathop 6\limits_\sim} $\end{document} is determined to 188 ± 5.5 kJ mole?1. The mechanism of formation of dimers \documentclass{article}\pagestyle{empty}\begin{document}$ {\mathop 3\limits_\sim}-{\mathop 5\limits_\sim} $\end{document} is discussed. To allow the formal analysis of the kinetic problem, a simple algorithm to obtain the rate constants of competing first- and second-order reactions was developed.  相似文献   

9.
The rate constants for the protonation of “free” (that is, solvated) superoxide ions by water and ethanol are equal to 0.5–3.5 ×10?3M?1·s?1 in DMF and AN at 20º. It has been found that the protonation rates for the ion pairs of \documentclass{article}\pagestyle{empty}\begin{document}${\rm O}_{\rm 2}^{\overline {\rm .} }$\end{document} with the Bu4N+ cation are much slower than those for “free” \documentclass{article}\pagestyle{empty}\begin{document}${\rm O}_{\rm 2}^{\overline {\rm .} }$\end{document}. It is suggested that the effects of aprotic solvents on the protonation rates of \documentclass{article}\pagestyle{empty}\begin{document}${\rm O}_{\rm 2}^{\overline {\rm .} }$\end{document} are mainly due to the fact that the proton donors form solvated complexes of different stability in these solvents.  相似文献   

10.
The charge stripping mass spectra of [C2H5O]+ ions permit the clear identification of four distinct species: \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} - {\rm O - }\mathop {\rm C}\limits^{\rm + } {\rm H}_{\rm 2}$\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} - \mathop {\rm C}\limits^{\rm + } {\rm H - OH}$\end{document}, and \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 2} = {\rm CH - }\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2}$\end{document}. The latter, the vinyloxonium ion, has not been identified before. It is generated from ionized n-butanol and 1,3-propanediol. Its heat of formation is estimated to be 623±12 kJ mol?1. The charge stripping method is more sensitive to these ion structures than conventional collisional activation, which focuses attention on singly charged fragment ions.  相似文献   

11.
Methods are described for the unequivocal identification of the acetyl, [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document} ?O] (a), 1-hydroxyvinyl, [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] (b), and oxiranyl, (d), cations. They involve the careful examination of metastable peak intensities and shapes and collision induced processes at very low, high and intermediate collision gas pressures. It will be shown that each [C2H3O]+ ion produces a unique metastable peak for the fragmentation [C2H3O]+ → [CH3]++CO, each appropriately relating to different [C2H3O]+ structures. [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] ions do not interconvert with any of the other [C2H3O]+ ions prior to loss of CO, but deuterium and 13C labelling experiments established that [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] (b) rearranges via a 1,2-H shift into energy-rich leading to the loss of positional identity of the carbon atoms in ions (b). Fragmentation of b to [CH3]++CO has a high activation energy, c. 400 kJ mol?1. On the other hand, , generated at its threshold from a suitable precursor molecule, does not rearrange into [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH], but undergoes a slow isomerization into [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] via [CH2\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}HO]. Interpretation of results rests in part upon recent ab initio calculations. The methods described in this paper permit the identification of reactions that have hitherto lain unsuspected: for example, many of the ionized molecules of type CH3COR examined in this work produce [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] ions in addition to [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] showing that some enolization takes place prior to fragmentation. Furthermore, ionized ethanol generates a, b and d ions. We have also applied the methods for identification of daughter ions in systems of current interest. The loss of OH˙ from [CH3COOD] generates only [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OD]. Elimination of CH3˙ from the enol of acetone radical cation most probably generates only [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] ions, confirming the earlier proposal for non-ergodic behaviour of this system. We stress, however, that until all stable isomeric species (such as [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^{\rm + } $\end{document}?C:]) have been experimentally identified, the hypothesis of incompletely randomized energy should be used with reserve.  相似文献   

12.
The atom parameters of columbite. FeNb2O6 and MnNb2O6, are refined by neutron diffraction. Low temperature measurements of FeNb3O6 provided magnetic reflections hkl with k half integer. From the intensities of the reflections a collinear magnetic structure \documentclass{article}\pagestyle{empty}\begin{document}$ \overrightarrow {\rm S} _1 = - \overrightarrow {\rm S} _2 = \overrightarrow {\rm S} _3 = \overrightarrow {\rm S} _4 $\end{document} results for the 4 atoms of the half of the magnetic unit cell. The moments lie parallel to the x-axis, φa = 0°. The moment is μ = 3.84 μB. For MaNb2O6 at 2.0°K reflections 010, 101 and 210 are observed additionally. From the observed intensities it is possible to distinguish a collinear model G: \documentclass{article}\pagestyle{empty}\begin{document}$ \overrightarrow {\rm S} _1 = - \overrightarrow {\rm S} _2 = \overrightarrow {\rm S} _3 = - \overrightarrow {\rm S} _4 $\end{document} with components Gx, Gza = 10°, φc = 80°), and a non-collinear model Cx (\documentclass{article}\pagestyle{empty}\begin{document}$ \overrightarrow {\rm S} _1 = \overrightarrow {\rm S} _2 = - \overrightarrow {\rm S} _3 = - \overrightarrow {\rm S} _4 $\end{document}) with Gy in favour of the first one.  相似文献   

13.
14.
Extensional tests at constant strain rate \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \varepsilon $\end{document} have been carried out on polystyrene melts with different molecular weight distributions at various temperatures and strain rates. The true tensile stress is found to be well approximated by the sum of two contributions: (1) a neo-Hookean expression involving the recoverable strain and (2) a contribution rapidly reaching a steady-state value. Two experimental parameters can be defined: an elasticity modulus \documentclass{article}\pagestyle{empty}\begin{document}$ G(\dot \varepsilon ) $\end{document} from (1) and a viscosity \documentclass{article}\pagestyle{empty}\begin{document}$ \eta _{\rm v} (\dot \varepsilon ) $\end{document} from (2). It is further shown that time-temperature equivalence applies not only to the stress but also to the recoverable strain and to G and ηv. The dependence of G and ηv on strain rate is then discussed. For high strain rates, G is close to the linear viscoelastic plateau modulus of PS melts and decreases with decreasing strain rate. The value of ηv is found to a good approximation to be equal to three times the shear viscosity taken at a shear rate equivalent to the elongational strain rate.  相似文献   

15.
Electron capture by and the subsequent fragmentation of a series of eleven fluorinated β-diketones of general formula CF3COCH2COR has been studied in an MS-50 mass spectrometer. Consecutive loss of two HF molecules from molecular anions occurs with all compounds, as does elimination of CHF3 from [M ? H]? ions. Elimination of CO occurs from either \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm M - HF}} \right]_{}^{_.^ - } $\end{document} or \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm M - 2HF}} \right]_{}^{_.^ - } $\end{document} ions for five compounds where R ? CF3 or a cyclic substituent. Kinetic energy release in metastable transitions associated with these HF and CO eliminations has been measured. Intensities of various fragment ions are in part influenced by the ion source temperature. Interaction of \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm O}} \right]_{}^{_.^ - } $\end{document} reagent ions with five of the β-diketones under chemical ionization conditions gave [M ? H]? ions as the only significant ion-molecule reaction product.  相似文献   

16.
ESR, ENDOR, and TRIPLE resonance studies have been performed on the radical anions of 1,2-diphenylcyclohex-1-ene ( 4 ), 1,2-di(perdeuteriophenyl)cyclohex-1-ene ((D10) 4 ) the trans-configurated 3,4-diphenyl-8-oxabicyclo[4.3.0]non-3-ene ( 5 ) and its 2,2,5,5-tetradeuterio derivative (D4) 5 , and 2,3-diphenyl-8,9,10-trinorborn-2-ene ( 6 ). The spectra of \documentclass{article}\pagestyle{empty}\begin{document}$ 4^{- \atop \dot{}} $\end{document} exhibit strong temperature dependence along with a specific broadening of ESR hyperfine lines and proton ENDOR signals. The coupling constant, which bears the main responsibility for these features, is that of the β-protons in the quasi-equatorial positions of the cyclohexene ring, and the experimental findings are readily rationlized in terms of relatively modest conformational changes without invoking the inversion of the half-chair form. The hyperfine data for the β-protons in \documentclass{article}\pagestyle{empty}\begin{document}$ 5^{- \atop \dot{}} $\end{document} closely resemble the corresponding low-temperature values for \documentclass{article}\pagestyle{empty}\begin{document}$ 4^{- \atop \dot{}} $\end{document}, However, the ‘unusual’ features observed for \documentclass{article}\pagestyle{empty}\begin{document}$ 4^{- \atop \dot{}} $\end{document} are absent in the ESR and ENDOR spectra of \documentclass{article}\pagestyle{empty}\begin{document}$ 5^{- \atop \dot{}} $\end{document}, because the half-chair conformation of the cyclohexene ring in \documentclass{article}\pagestyle{empty}\begin{document}$ 5^{- \atop \dot{}} $\end{document} is deprived of its flexibility. Although the boat form of this ring in \documentclass{article}\pagestyle{empty}\begin{document}$ 6^{- \atop \dot{}} $\end{document} is also rigid, the spectra of \documentclass{article}\pagestyle{empty}\begin{document}$ 6^{- \atop \dot{}} $\end{document} are temperature-dependent, due to an interconversion between two propeller-like conformations of the phenyl groups. The pertinent barrier is 30 ± 5 kJ ·mol?1. An analogous interconversion presumably takes place in \documentclass{article}\pagestyle{empty}\begin{document}$ 4^{- \atop \dot{}} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ 5^{- \atop \dot{}} $\end{document} as well, but, unlike \documentclass{article}\pagestyle{empty}\begin{document}$ 6^{- \atop \dot{}} $\end{document}, it is not amenable to experimental study.  相似文献   

17.
Bifunctional methoxonium ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm R} -\mathop {\rm C}\limits^ + ({\rm OCH}_3 ) - ({\rm CH}_2 )_{\rm n} - {\rm OH}({\rm b}) $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm R} - \mathop {\rm C}\limits^ + ({\rm OCH}_3 ) - ({\rm CH}_2 )_{\rm n} - {\rm OCH}_3 ({\rm c}) $\end{document} (c) show as the main reactions those caused by functional group interaction, as has already been found for the analogous hydroxonium ions (g). Although there are similarities in the fragmentation behaviour of the isomeric ions b and g, their fragmentation pathways are different, proving b and g as distinct species. The dominant primary fragmentation for b and c is loss of CH3OH. The hydrogen migrations prior to this reaction have been established by deuterium labelling. The findings on the fragmentation behaviour of the bifunctional methoxonium ions have been extended to the general behaviour of hydroxy and alkoxy substituted alkoxonium ions.  相似文献   

18.
19.
The structures of copolymers of aziridines with cyclic imides were determined by means of infrared spectrometry, paper electrophoresis of the hydrolyzate, and NMR spectrometry. The structure of the repeating unit in the copolymer of ethylenimine with succinimide was \documentclass{article}\pagestyle{empty}\begin{document}$\rlap{--} ({\rm CH}_2 {\rm CH}_2 {\rm NHCOCH}_2 {\rm CH}_2 {\rm CONH}\rlap{--} ) $\end{document}. The endgroups of the copolymer were N-acylethylenimine ring, N-substituted succinimide ring, and primary amide group. The copolymer of ethylenimine with N-ethylsuccinimide had the repeating unit of \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} [{\rm CH}_2 {\rm CH}_2 {\rm NHCOCH}_2 {\rm CH}_2 {\rm CON}({\rm C}_2 {\rm H}_5 )\rlap{--} ] $\end{document} and the endgroups of N-acylethylenimine and N-substituted succinimide ring. N-Ethylethylenimine did not copolymerize with succinimide, but in the presence of water, the reaction occurred to give an amorphous polymer. This copolymer had the repeating unit \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} [{\rm CH}_2 {\rm CH}_2 {\rm NHCOCH}_2 {\rm CH}_2 {\rm CON}({\rm C}_2 {\rm H}_5 )\rlap{--} ] $\end{document} and the endgroups were N-substituted succinimide ring and amine group but not N-acylethylenimine ring. On the basis of this structural information, the initiation reaction was discussed.  相似文献   

20.
The radical anions of 6a-thiathiophthenes ([1,2]dithiolo[1,5-b] [1,2]dithioles), I(R), convert into those of 4H-thiapyran-4-thiones, III(R), via cis-trans isomerization. The reaction is slowed down when the size of the substituent R in the 2,5-positions of 6a-thiathiophthene increases, and it is prevented by the introduction of a 3,4-polymethylene bridge. The primary and the secondary radical anions, I(R)\documentclass{article}\pagestyle{empty}\begin{document}$ ^{\ominus \atop \dot{}} $\end{document} and III(R)\documentclass{article}\pagestyle{empty}\begin{document}$ ^{\ominus \atop \dot{}} $\end{document}, respectively, exhibit very similar hyperfine splitting patterns. E.g., in the case of the unsubstituted 6a-thiathiophthene, I(H), and 4H-thiapyran-4-thione, III(H), the proton coupling constants are aH2,5=6.72 and aH3,4=1.73 Gauss for I(H)\documentclass{article}\pagestyle{empty}\begin{document}$ ^{\ominus \atop \dot{}} $\end{document}, and aH2,6=6.35 and aH3,5=2.07 Gauss for III(H)\documentclass{article}\pagestyle{empty}\begin{document}$ ^{\ominus \atop \dot{}} $\end{document}. In contrast to I(H)\documentclass{article}\pagestyle{empty}\begin{document}$ ^{\ominus \atop \dot{}} $\end{document}, cis-trans isomerization could not thus far be proved to occur with its 1,6-dioxa-analogue, IV(H)\documentclass{article}\pagestyle{empty}\begin{document}$ ^{\ominus \atop \dot{}} $\end{document}, since no ESR. spectrum of the radical anion of 4H-pyran-4-thione, V(H), was detected upon reduction of IV(H).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号