首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The EPR parameters of the phenothiazine cation radical (PTAZ+) have been determined with the sample in the form of a power and in sulphuric solution. The study of the solution at different temperatures in the 77–333 K range does not indicate conformational changes affecting the α proton, but shows a difference in g-values between the powder and the solution spectra. This variation can be interpreted as originated by changes in the molecular geometry of the cation ring system due to interactions with the solvent molecules.  相似文献   

2.
Semiempirical molecular orbital methods including CNDO, MNDO, AM1 and PM3, and density function theory method B3LYP/3-21G(d) were employed in the study of the alimemazine radical cation. It was found that PM3 was much better than CNDO, MNDO and AM1 in the structural optimization. The bond lengths and bond angles by PM3 were close to the experimental data, and comparable with the results by the density function theory method.  相似文献   

3.
The EPR spectrum of γ-irradiated 2,2,3,3-tetramethylbutane has been reinvestigated. Previous evidence for the radical cation Me3C??CMe+3 has been critically examined and it is concluded that a more satisfactory analysis can be made on the basis of the three neutral radicals ?CH2CMe2CMe3, ?CMe2CMe3 and ?CMe3.  相似文献   

4.
5.
This work shows that very high-field EPR spectroscopy allows a rather accurate determination of the g-tensor of protein radicals, including C-centered ones, and thus may be used as a probe for distinguishing a tyrosyl-, a glycyl-, or a tryptophanyl-radical. In this paper, we report the first complete analysis of the g-tensor of glycyl radical enzymes (anaerobic ribonucleotide reductase, pyruvate formate lyase, and benzylsuccinate synthase), thus providing new information on their EPR properties. Because the g-anisotropy is small, the complete resolution of the g-tensor could be only obtained at very high field (18.8 T).  相似文献   

6.
7.
N-Methyl and N-ethylphenothiazines were oxidized with bromine and sodium perchlorate to give stable cation radical salts. Their well-resolved epr spectra were obtained in nitromethane solution. In order to assign the hfs constants, the cation radicals of N-deuteriomethyl and N-deuterioethylphenothiazines were prepared with lead tetraacetate and trifluoroacetic acid in solutions.  相似文献   

8.
Compared with normal and bridge-head aminium cations, the triethylenediamine cation is relatively stable. Its ESR spectrum shows that the two nitrogen atoms and all the protons are magnetically equivalent even at 77 K. This favours a symmetrical ground state rather than a dynamic equilibrium between classical, asymmetric structures.  相似文献   

9.
The tetramethylcyclobutadiene radical cation has been generated photochemically in solutions of aluminum halide σ complexes of tetramethylcyclobutadiene. It decays thermally to a “dimeric” radical cation.  相似文献   

10.
The conversion of the cyclobutene cation radical to the 1,3-butadiene cation radical has been studied using MINDO /3 and ab initio SCF MO methods. Not only smooth electrocyclic but also stepwise, non-electrocyclic routes were considered. Both calculational methods agree that the preferred reaction path is a novel nonelectrocyclic one proceeding through an intermediate “cyclopropylcarbinyl cation radical.” The quantitative agreement in the activation parameters calculated by the two methods is excellent. The proposed intermediate also provides an attractive explanation for the mass spectrometric fragmentation patterns of the cyclobutene and butadiene cation radicals.  相似文献   

11.
The radical anion of tetraline was prepared by reduction in 1,2-dimethoxyethane and measured at ?80° and ?93°C. Coupling constants, all triplets, are: 7.03, 2.17, 1.94, 1.75, 0.51 and 0.19 G.  相似文献   

12.
《Chemical physics letters》1999,291(3-4):224-232
A theoretical study of C3Cl and C3Cl+ isomers has been carried out. The global minimum for C3Cl is a cyclic C2V species (a three-membered ring with an exocyclic chlorine atom). However, a quasi-linear CCCCl structure is predicted to lie only 3-5 kcal mol−1 higher. This quasi-linear structure is floppy, since the linear arrangement lies only 2-3 kcal mol−1 higher in energy. The cyclic and open-chain isomers have dipole moments of 1.986 and 3.363 D, respectively. In C3Cl+ the global minimum is a linear singlet species, the singlet cyclic isomer lying about 19 kcal mol−1 higher. The ionization potentials of cyclic and open-chain C3Cl are estimated to be 9.17 and 8.21 eV, respectively, suggesting that these species should be easily ionized if present in the interstellar medium.  相似文献   

13.
Car-Parrinello molecular dynamics (CPMD) studies of neutral (1) and ionized (1 (+.)) valeramide are performed with the aim of providing a rationalization for the unusual temperature effect on the dissociation pattern of 1(+.) observed in mass spectrometric experiments. According to CPMD simulations of neutral valeramide 1 performed at approximately 500 K, the conformation with the fully relaxed carbon backbone predominates (96 %). Conformational changes involving folding of the carbon backbone into conformers that would allow intramolecular H transfers are predicted not to take place spontaneously at this temperature because of the barrier heights associated with these transitions (3.5 and 6.9 kcal mol(-1)), which cannot be overcome by thermal motion alone. For 1(+.), CPMD simulations performed at approximately 300 K reveal a substantial stability of a conformation in which the carbon backbone is fully relaxed; no reaction is observed even after 7 ps. However, when conformers with already folded carbon-backbones are used as initial geometries in the CPMD simulations, the gamma-hydrogen migration (McLafferty rearrangement resulting in C(3)H(6)) is already completed within 2 ps. For this important process, the free activation energy associated with both a required conformational change and the subsequent H transfer equals 4.5 kcal mol(-1), while for the formally related delta-H shift (which eventually gives rise to the elimination of C(2)H(4)/C(2)H(5.)) it amounts to 7.0 kcal mol(-1). Since the barriers associated with conformational changes are energetically more demanding than those of the corresponding hydrogen transfers, 1(+.) is essentially trapped by conformational barriers and long-lived at approximately 300 K. At elevated temperatures (500 K), the preferred reaction (within 7.3 ps) in the CPMD simulation corresponds to the McLafferty rearrangement. The estimated free activation energy associated with this process amounts to 2.5 kcal mol(-1), while the free activation energy for the delta-H transfer equals 4.4 kcal mol(-1). This relatively small free activation energy for the McLafferty rearrangement might cause dissociation of a substantial fraction of 1(+.) prior to the time-delayed mass selection, which would reduce the C3/C2 ratio in the experiments conducted with metastable ions that have a lifetime in the order of some micros at a source temperature of 500 K.  相似文献   

14.
The ring-closing reaction of hexatriene radical cation 1(*)(+) to 1,3-cyclohexadiene radical cation 2(*)(+) was studied computationally at the B3LYP/6-31G* and QCISD(T)/6-311G*//QCISD/6-31G* levels of theory. Both, concerted and stepwise mechanisms were initially considered for this reaction. Upon evaluation at the B3LYP level of theory, three of the possible pathways-a concerted C(2)-symmetric via transition structure 3(*)(+) and stepwise C(1)-symmetric pathways involving three-membered ring intermediate 5(*)(+) and four-membered ring intermediate 6(*)(+)-were rejected due to high-energy stationary points along the reaction pathway. The two remaining pathways were found to be of competing energy. The first proceeds through the asymmetric, concerted transition structure 4(*)(+) with an activation barrier E(a) = 16.2 kcal/mol and an overall exothermicity of -23.8 kcal/mol. The second pathway, beginning from the cis,cis,trans rotamer of 1(*)(+), proceeds by a stepwise pathway to the cyclohexadiene product with an overall exothermicity of -18.6 kcal/mol. The activation energy for the rate-determining step in this process, the formation of the intermediate bicyclo[3.1.0]hex-2-ene via transition structure 9(*)(+), was found to be 20.4 kcal/mol. More rigorous calculations of a smaller subsection of the potential energy hypersurface at the QCISD(T)//QCISD level confirmed these findings and emphasized the importance of conformational control of the reactant.  相似文献   

15.
16.
17.
Laser induced fluorescence excitation and resolved emission spectra of 1,3-C6H4F+2 are obtained in a Ne matrix with high signal/noise despite the ion's low emission quantum yield. The ground state vibrational structure is mostly regular but that of the upper is very irregular suggesting nearly degenerate, mutually perturbing, excited states.  相似文献   

18.
19.
Examination of the reactions of the long-lived (>0.5-s) radical cations of CD3CH2COOCH3 and CH3CH2COOCD3 indicates that the long-lived, nondecomposing methyl propionate radical cation CH3CH2C(O)OCH 3 isomerizes to its enol form CH3CH=C(OH)OCH 3 H isomerization ? ?32 kcal/mol) via two different pathways in the gas phase in a Fourier-transform ion cyclotron resonance mass spectrometer. A 1,4-shift of a β-hydrogen of the acid moiety to the carbonyl oxygen yields the distonic ion ·CH2CH2C+ (OH)OCH3 that then rearranges to CH3CH=C(OH)OCH 3 probably by consecutive 1,5- and 1,4-hydrogen shifts. This process is in competition with a 1,4-hydrogen transfer from the alcohol moiety to form another distonic ion, CH3CH2C+(OH)OCH 2 · , that can undergo a 1,4-hydrogen shift to form CH3CH=C(OH)OCH 3 . Ab initio molecular orbital calculations carried out at the UMP2/6-31G** + ZPVE level of theory show that the two distonic ions lie more than 16 kcal/mol lower in energy than CH3CH2C(O)OCH 3 . Hence, the first step of both rearrangement processes has a great driving force. The 1,4-hydrogen shift that involves the acid moiety is 3 kcal/mol more exothermic (ΔH isomerization=?16 kcal/mol) and is associated with a 4-kcal/mol lower barrier (10 kcal/mol) than the shift that involves the alcohol moiety. Indeed, experimental findings suggest that the hydrogen shift from the acid moiety is likely to be the favored channel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号