首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kekulé structures of 10 nonlinear acenes comprising 83 graphs are studied through the use of connectivities [M. Randi?, J. Am. Chem. Soc. 97 , 6609 (1975)] of their corresponding submolecules [H. Joela, Theor. Chim. Acta 39 , 241 (1975)]. In certain rare cases states were identified to have identical branching indices but different Kekulé indices [A. Graovac, I. Gutman, M. Randi?, and N. Trinajsti?, J. Am. Chem. Soc. 95 , 6267 (1973)]. Such states are termed pseudodegenerate states. A method is described to forecast and another to remedy such situations. The method emphasizes the relation between VB (resonance) and MO theories using graph-theoretical concepts.  相似文献   

2.
Molecular connectivities of submolecules [H. Joela, Theor. Chim. Acta 39 , 241 (1975)] corresponding to Kekulé structures of nine nonalternate hydrocarbons and four nonbenzenoid hydrocarbons containing four-membered rings are correlated with their Kekulé indices. In the latter class of compounds it was observed that the corresponding submolecules contain cut vertices and bridges in contrast to submolecules of benzenoid hydrocarbons which are devoid of such bridges. It was observed, furthermore, that the branching index goes up with the number of bridges in the submolecule. The results present an application to the abstract relation [D. Cvetkovi?, I. Gutman, and N. Trinajsti?, J. Chem. Phys. 61 , 2700 (1974)] between resonance and MO theories.  相似文献   

3.
Kekulé indices and conjugated circuits are computed for 36 Kekulé structures, together with two VB quantities associated with the corresponding factor graphs (previously called submolecules). These latter quantitites are nonadjacent numbers of Hosoya and the reciprocal of the connectivity indices of Randi?. It was found that the index of Hosoya successfully orders a set of Kekulé structures belonging to the same hydrocarbon in a parallel order as their Kekulé indices and branching indices. This substantiates the relation between VB and MO theories. A code is derived by summing contributions of nonadjacent numbers in all Kekulé stuctures of a hydrocarbon. The order of the resulting codes is found to be identical to the order of the molecular properties (resonance energies, π-energies, and eigenvalues) of the hydrocarbons.  相似文献   

4.
The concept of numerical Kekulé structures is used for coding and ordering geometrical (standard) Kekulé structures of several classes of polycyclic conjugated molecules: catacondensed, pericondensed, and fully arenoid benzenoid hydrocarbons, thioarenoids, and [N]phenylenes. It is pointed out that the numerical Kekulé structures can be obtained for any class of polycyclic conjugated systems that possesses standard Kekulé structures. The reconstruction of standard Kekulé structures from the numerical ones is straightforward for catacondensed systems, but this is not so for pericondensed benzenoid hydrocarbons. In this latter case, one needs to use two codes to recover the geometrical Kekulé structures: the Wiswesser code for the benzenoid and the numerical code for its Kekulé structure. There is an additional problem with pericondensed benzenoid hydrocarbons; there appear numerical Kekulé structures that correspond to two (or more) geometrical Kekulé structures. However, this problem can also be resolved.  相似文献   

5.
6.
A fast computer algorithm brings computation of the permanents of sparse matrices, specifically, molecular adjacency matrices. Examples and results are presented, along with a discussion of the relationship of the permanent to the Kekulé structure count. A simple method is presented for determining the Kekulé structure count of alternant hydrocarbons. For these hydrocarbons, the square of the Kekulé structure count is equal to the permanent of the adjacency matrix. In addition, for alternant structures the adjacency matrix for N atoms can be written in such a way that only an N/2 × N/2 matrix need be evaluated. The Kekulé structure count correlates with topological indices. The inclusion of the number of cycles improves the fit. When comparing with previous results, the variance decreases 74%. The calculated standard heat of formation correlates with the logarithm of the Kekulé structure count. This heat increments 349 kJ/mol each time the Kekulé structure count increases by one order of magnitude. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

7.
Previously, we presented an algorithm for counting Kekulé structures for parallelogram-like benzenoids with holes by counting descending paths using rectangular meshes with holes. In this article, we describe an algorithm to count Kekulé structures for convex cyclofusenes using a combinatorial/geometric approach.  相似文献   

8.
Heats of atomization for a range of conjugated molecules containing nitrogen or oxygen are calculated by a semiempirical method that combines some features of both the MO and VB theories. The π ground state of each conjugated molecule is represented as a linear combination of Kekulé structures. Unlike in the VB theory, each Kekulé structure is a determinant containing bond orbitals. Here experimental heats of atomization are reproduced approximately as well as by the more sophisticated SCF –MO approach. The use of this method is, however, much simpler since it amounts to a single diagonalization of a matrix of the order equal to the number of Kekulé structures only.  相似文献   

9.
Let G be a (molecule) graph. A perfect matching, or Kekulé structure of G is a set of independent edges covering every vertex exactly once. Enumeration of Kekulé structures of a (molecule) graph is interest in chemistry, physics and mathematics. In this paper, we focus on some polyominos on the torus and obtain the explicit expressions on the number of the Kekulé structures of them.  相似文献   

10.
We developed a theoretical method for studying the aromatic stability of large molecules, molecules having a dozen and more fused benzene rings. Such molecules have so far often been outside the domain of theoretical studies. Combining the statistical approach and a particular graph theoretical analysis, it is possible to derive the expressions for molecular resonance energy for molecules of any size. The basis of the method is enumeration of conjugated circuits in random Kekulé valence structures. The method has been applied to evaluation of the resonance energies of conjugated hydrocarbons having about a dozen fused benzene rings. The approach consists of (1) construction of random Kekulé valence structures, (2) enumeration of conjugated circuits within the generated random valence structures, and (3) application of standard statistical analysis to a sufficiently large sample of structures. The construction of random valence forms is nontrivial, and some problems in generating random structures are discussed. The random Kekulé valence structures allow one not only to obtain the expression for molecular resonance energies (RE ) and numerical estimates for RE , but also they provide the basis for discussion of local molecular features, such as ring characterization and Pauling bond orders.  相似文献   

11.
For a Kekulé structure we consider the smallest number of placements of double bonds such that the full Kekulé structure on the given parent graph is fully determined. These numbers for each Kekulé structure of the parent graph sum to a novel structural invariant F, called the degree of freedom of the graph. Some qualitative characteristics are identified, and it is noted that apparently it behaves differently from a couple of other invariants related to Kekulé structures.  相似文献   

12.
13.
By assigning two pi-electrons of CC double bonds in a Kekulé valence structure to a benzene ring if not shared by adjacent rings and one pi-electron if CC double bond is shared by two rings we arrived at numerical valence formulas for benzenoid hydrocarbons. We refer to numerical Kekulé formulas as algebraic Kekulé valence formulas to contrast them to the traditional geometrical Kekulé valences formulas. The average over all numerical Kekulé valence structures results in a single numerical structure when a benzenoid hydrocarbon molecule is considered. By ignoring numerical values the novel quantitative formula transforms into a qualitative one which can replace incorrectly used notation of pi-electron sextets to indicate aromatic benzenoids by placing inscribed circles in adjacent rings-which contradicts Clar's characterization of benzenoid hydrocarbons.  相似文献   

14.
π-electron energies and bond orders of benzenoid hydrocarbons with up to five fused hexagons have been considered by the simple Bond Orbital Resonance Theory (BORT) approach. The corresponding ground states were determined according to four BORT models. In the first three models a diagonalisation of the Hückel-type Hamiltonian was performed in the bases of Kekulé, of Kekulé and mono-Claus and of Kekulé and Claus resonance structures, respectively. In the fourth model a simple BORT ansatz was used. According to this ansatz, the ground state is a linear combination of the positive Kekulé structures, all with equal coefficients. It was shown that π-electron energies and bond orders obtained by these models correlate much better with the PPP energies and bond orders than with the Hückel energies and bond orders. This indicates that a simple BORT approach is quite reliable in predicting the more sophisticated PPP results. Concerning the relative performance of the four BORT models, the best results were obtained with the BORT ansatz. The performance deteriorates with the expansion of the basis set. This is attributed to the fact that in these models the improvement of the basis set is not accompanied with the corresponding improvement of the Hamiltonian. Comparing the BORT-ansatz bond orders with the Pauling bond orders, it was shown that BORT-ansatz bond orders correlate much better with the PPP bond orders. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
M. Randić 《Tetrahedron》1974,30(14):2067-2074
A generalization of the Kekulé index for composite valence structures provides a quantitative value corresponding to Clar's assessment of benzenoid character of aromatic ring systems. The idea involved is further specialized for the individual local rings in the molecules. Comparison with limited experimental data supports the validity of this approach.  相似文献   

16.
The resonance energy of (1,1)n "armchair" carbon nanotubes and (n,n)1 nanoribbons was determined by enumerating the conjugated circuits (CC) and the Kekulé structures. The lower indices denote the number of hexagon layers. It was found that the resonance energy per carbon atom is equal to 0.160 eV in (1,1)n tubes and 0.142 eV in (n,n)1 tubes.  相似文献   

17.
Carbon nanotubes (CNTs) are composed of cylindrical graphite sheets consisting of sp(2) carbons. Due to their structure CNTs are considered to be aromatic systems. In this work the number of Kekulé structures (K) in "armchair" CNTs was estimated by using the transfer matrix technique. All Kekulé structures of the cyclic variants of naphthalene and benzo[c]phenanthrene have been generated and the basic patterns have been obtained. From this information the elements of the transfer matrix were derived. The results obtained indicate that K (and the resonance energy) is greater if tubulenes are extended in the vertical than in the horizontal direction. Tubulenes are therefore more stabile than cyclic strips. An illustration, obtained by using scanning probe microscope, has been attached to affirm the existence of thin CNTs.  相似文献   

18.
The Zhang–Zhang polynomial (i.e., Clar covering polynomial) of hexagonal systems is introduced by H. Zhang and F. Zhang, which can be used to calculate many important invariants such as the Clar number, the number of Kekulé structures and the first Herndon number, etc. In this paper, we give out an explicit recurrence expression for the Zhang–Zhang polynomials of the cyclo-polyphenacenes, and determine their Clar numbers, numbers of Kekulé structures and their first Herndon numbers.  相似文献   

19.
A Kekulé structure for a benzenoid or a fullerene $\Gamma $ is a set of edges $K$ such that each vertex of $\Gamma $ is incident with exactly one edge in $K$ , i.e. a perfect matching. All fullerenes admit a Kekulé structure; however, this is not true for benzenoids. In this paper, we develop methods for deciding whether or not a given benzenoid admits a Kekulé structure by constructing Kekulé structures that have a high density of benzene rings. The benzene rings of the Kekulé structure $K$ are the faces in $\Gamma $ that have exactly three edges in $K$ . The Fries number of $\Gamma $ is the maximum number of benzene rings over all possible Kekulé structures for $\Gamma $ and the set of benzene rings giving the Fries number is called a Fries set. The Clar number is the maximum number of independent benzene rings over all possible Kekulé structures for $\Gamma $ and the set of benzene rings giving the Clar number is called a Clar set. Our method of constructing Kekulé structures for benzenoids generally gives good estimates for the Clar and Fries numbers, often the exact values.  相似文献   

20.
We recently reported an algorithm to count Kekulé (resonance) structures for convex cyclofusenes using a combinatorial/geometric approach. Previously, we presented an algorithm for counting resonance structures for parallelogram-like benzenoids with holes by counting descending paths using rectangular meshes with holes. In this article, we employ a similar combinatorial/geometric approach to determine algorithms that will facilitate counting of the resonance structures in parallelogram-like benzenoids with no holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号