首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Poly(N-vinylcarbazole) (PVK) samples were found to exhibit up to three glass transition temperatures Tg, corresponding to the whole chain and the syndiotactic and isotactic stereoblocks. An increasing tendency to multiple Tgs, and hence to phase separation, was observed with increasing isotacticity. Limiting values at infinite molecular weight for syndiotactic and isotactic PVK were obtained from correlations of the Tgs corresponding to the syndiotactic and isotactic stereoblocks with their respective average stereoblock lengths derived from 13C NMR measurements. They were found to be 549 and 399 K, respectively. The conventional Tg for PVK was found to exhibit the following dependence upon the syndiotactic dyad mole fraction Xs: The molecular weight dependences of the conventional Tgs for several fractionated PVK samples obeyed a Fox–Flory-type relation with values of ?dTg/d(1/M) varying between 7.6 × 103 for isotactic PVK and 2.7 × 105 for Luvican M 170.  相似文献   

2.
The stability constants, 1, of the monofluoride complex of Fe(III) have been determined in mixed methanol + water solvent system with 0.3 mol·dm–3 HClO4 using a solvent extraction technique. The values, in less than 0.31 mole fraction of CH3OH (X s) in the mixed CH3OH+H2O solvent solution, increase asX s increases. The variation of in 1 againstX s was analyzed to elucidate the variation of intraionic distance between Fe3+ and F. The intraionic distance maintains constant inX s<0.05 and lengthens with an increase ofX s in 0.05<X s<0.31.  相似文献   

3.
Methyl, ethyl, and isopropyl butenyl ethers, CH3CH2CH?CHOR, were polymerized with homogeneous catalysts at ?78°C. Toluene, methylene chloride, and nitroethane were used as solvents, and BF3O(C2H5)2 and SnCl4·CCl3CO2H were used as catalysts. The stereoregularity of the polymers were compared by x-ray diagrams and infrared absorption ratios. The stereoregularity of polymers increased with increasing content of the trans isomer in the monomer and with increasing polarity of the solvent. In the polymerization of methyl and ethyl butenyl ethers, crystalline polymers were obtained from both the trans and cis isomers. The crystalline polymer prepared from the trans isomer and that from the cis isomer had the same steric structure. This behavior is quite different from that observed in the polymerization of propenyl ethers. It is concluded that the bulkiness of the group on the olefinic β-carbon plays an important role in the stereospecific polymerization of α,β-disubstituted olefins.  相似文献   

4.
α-Methylvinyl isobutyl and methyl ethers were polymerized cationically and the structure of the polymers was studied by NMR. Poly(α-methylvinyl methyl ether) polymerized with iodine or ferric chloride as catalyst was found to be almost atactic, whereas poly(α-methylvinyl isobutyl ether) polymerized in toluene with BF3OEt2 or AlEt2Cl as catalyst was found to be isotactic. In both cases, the addition of polar solvent resulted in the increase of syndiotactic structure as is the case with polymerization of alkyl vinyl ether. tert-Butyl vinyl ether was polymerized, and the polymer was converted into poly(vinyl acetate), the structure of which was studied by NMR. A nearly linear relationship between the optical density ratio D722/D736 in poly(tert-butyl vinyl ether) and the isotacticity of the converted poly(vinyl acetate) was observed.  相似文献   

5.
The stability constants, 1, of each monochloride complex of Nd(III) and Tm(III) have been determined in the mixed system of methanol and water with 1.0 mol·dm–1 ionic strength using a solvent extraction technique. The values of 1 of Nd(III) and Tm(III) increase as the mole fraction of methanol in the mixed solvent system (X s) increases. However, the variation mode of 1 againstX s in the region of 0.00X s0.40 differs from each other, a concave curve for the Nd(III) and a convex curve for the Tm(III). The LnCl2+ formed is present as a solvent-shared ion-pair. Since Cl is a structure breaking ion, it was assumed that the primary solvation sphere of Ln3+ directly contacted with Cl. Calculation of Ln3+–Cl distance using Bom-type equation revealed the followings: (1) for Tm3+ with coordination number 8, the estimated distance between Tm3+ and Cl increases linearly withX s in 0.00X s0.40. The results mean an increase of the primary solvation sphere size of Tm3+ withX s. (2) For Nd3+, the distance between Nd3+ and Cl decreases linearly withX s in 0.00X s<0.13, where both coordination numbers of 9 and 8 coexist, while it increases withX s in 0.13<X s0.40. The results mean a decrease of the primary solvation-sphere size of Nd3+ withX s in 0.00X s<0.13 and an increase of that withX s in 0.13<X s0.40.  相似文献   

6.
Temperature dependence was studied for relative quantum yields of emission from some exciplexes of pyrene, 1,12-benzoperylene, and 9-cyanoanthracene with methoxybenzenes or methylnaphthalenes in solvents of different polarity (ranging from toluene to acetonitrile). The enthalpy H Ex *, the entropy S Ex *, and the Gibbs free energy G Ex *of formation of the exciplexes were determined. Depending of the Gibbs free energy of excited-state electron transfer (G et *) and solvent polarity, the values of H Ex *, S Ex *, and G Ex *vary over the ranges from –5 to –40 kJ mol–1, from +3 to –90 J mol–1K–1, and from +3 to –21 kJ mol–1, respectively. The possibility is discussed that the effect of solvent polarity G et *on the exciplex formation enthalpies can be rationalized in terms of the model of correlated polarization of an exciplex and the medium.  相似文献   

7.
Syndioselective propylene polymerization has been promoted by rac-2,2-dimethylpropylidene (1-η5-cyclopentadienyl) (1-η5-fluorenyl) dichlorozirconium ( 1 ). The active catalytic species were generated using either triphenylcarbenium tetrakis (pentafluorophenyl) borate ( 2 ) (Zr+ method) or methylaluminoxane (MAO method). The former exhibited much higher activity than the latter, especially at low polymerization temperatures (Tp). Syndiotactic poly (propylene) (s-PP) obtained at Tp = ?20°C has Tm approaching 160°C, [rrrr] pentad fraction of 0.92 to 0.95, and 45% crystallinity (Xc). It crystallized in two antichiral unit cells B and C. The C structure is favored by low temperature of polymerization, slow crystallization from melt, and annealing. The s-PP has M?w/M?n ranging from 3.6 to 4.4, which can be separated into stereoregular fractions soluble in heptane and hexane and stereoirregular fractions soluble in pentane, ether, and acetone. Therefore, this system cannot be considered to be a single-site catalyst. A parallel study was made on the isopropylidene (1-η5-cyclopentadienyl) (1-η5-fluorenyl) dichlorozirconium ( 3 )/MAO catalyst. Molecular mechanics calculations were performed for all combinations of the configuration of asymmetric centers. The steric energy favors syndiotactic enchainment for both catalysts 1 and 3 , with 1 forming the more syndioselective catalyst. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
9.
The relationship between stereoregularity and polymerization conditions of α-methylstyrene has been studied by means of NMR spectra. The effects of solvents and various Freidel-Crafts catalysts have been investigated. The stereoregularity of poly-α-methylstyrene increased with increased polymer solubility in the solvent used and with decreasing polymerization temperature. This behavior is completely different from the stereospecific polymerization of vinyl ethers and methyl methacrylate in homogeneous systems. This may be due to the strong steric repulsion exerted by the two substituents in the α-position of α-methylstyrene. For example, with BF3 · O(C2H5)2 as catalyst at ?78°C., atactic polymer is obtained in n-hexane, a nonsolvent for α-methylstyrene, whereas highly stereoregular polymer is produced in toluene or methylene chloride, good solvents for the polymer. However, the polarity of the solvent and the nature of the catalyst hardly affect the stereoregularity of the polymer.  相似文献   

10.
Methyl vinyl ether (MVE) was polymerized under various conditions by BF3·O(C2H5)2 and SnCl4·CCl3CO2H catalysts. The effect of polymerization conditions on the steric structure of poly(methyl vinyl ether) (PMVE) was studied by NMR spectra. It was found that the triad isotacticity of PMVE decreased and the syndiotacticity and heterotacticity increased with increasing polarity of the solvent and increasing polymerization temperature. This result coincided with the qualitative conclusion estimated from softening point and infrared spectra. However, the variation of tacticity by the change of the polarity of a solvent was not so large as expected. There was no large difference between the behavior of BF3·O(C2H5)2 and SnCl4·CCl3CO2H as catalysts. From the relation between the difference of free energy of monomer addition due to the steric structure of the polymer and the polymerization temperature, it was concluded that the penultimate effect really existed and was due to only the difference in enthalpy in the MVE–BF3. O(C2H5)2 or MVE–SnCl4·CCl3CO2H systems. The penultimate effect was not greatly changed by the polymerization conditions in these systems.  相似文献   

11.
The influence of solvent properties on acidity constants of some newly synthesized 9,10-anthraquinone and 9-anthrone derivatives was studied in methanol-water mixtures in a composition range of 0.57 to 1.0 methanol mole fraction. The model was established by using both multiple linear regression and target factor analysis. Both methods revealed that the solvent polarity/polarizability parameter * is a major factor in controlling the acidity behavior of the anthraquinones and anthrones studied in binary methanol-water mixed solvents. A QSPR study was conducted to drive the relationships between the * coefficient s and the polarity/polarizability of molecules. Both dipole moment and polarizability were found to have a linear relationship with s. The results confirm that, in the dipolar protic solvents used, the dipole-dipole interaction (for neutral molecules) and the ion-dipole interaction (for ionized molecules) are the major factors controlling the acidity behavior of these compounds.  相似文献   

12.
Decene-l was polymerized with the MgCl2/ethylebenzoate/p-cresol/AIEt3/TiCl4-AlEt3/methyl-p-toluate catalyst at 50° using an A/T ratio of 167 and a range of monomer concentration. The concentration of the two kinds of active sites are [Ti] = 12% and [Ti] = 4% of the total titanium. The rate constants of propagation are 24 M?1 s?1. Chain transfers to AIEt3, monomer, and by β-hydride elimination have rate constant values of 1.7 × 10?3 M?1 s?1, 1.34 × 10?2 M?1 s?1, and 1.7 × 10?2 s?1, respectively. Poly(decene-l) have relatively narrow MW which are unchanged during the course of a polymerization. Therefore, the active site concentrations in the CW catalyst for propylene and decene polymerization are identical and their rate constant values agree within a factor of 2. However, the rate of decene polymerization depends on fractional order of monomer concentration and decreases with the increase of activator concentration. Furthermore, the formation of metal polymer bonds has a rate independent of these concentrations. These kinetic behaviors are a manifestation of absorption processes of these species which are not seen in propylene polymerizations.  相似文献   

13.
Syndiospecific polymerization of styrene was catalyzed by monocyclopentadienyltributoxy titanium/methylaluminoxane [CpTi (OBu)3/MAO]. The atactic and syndiotactic polystyrenes were separated by extracting the former with refluxing 2-butanone. The activity and syndiospecificity of the catalyst were affected by changes in catalyst concentration and composition, polymerization temperature, and monomer concentration. Extremely high activity of 5 × 107 g PS (mol Ti mol S h)?1 with 99% yield of the syndiotactic product were achieved. The concentration of active species, [C*], has been determined by radiolabeling. The amount of the syndiospecific and nonspecific catalytic species, [C] and [C] respectively, correspond to 79 and 13% of the CpTi(OBu)3. The rate constants of propagation for C and C at 45°C are 10.8 and 2.0 (M s)?1, respectively, the corresponding rate constants for chain transfer to MAO are 6.2 × 10?4 and 4.3 × 10?4s?1. There was no deactivation of the catalytic species during a batch polymerization. The rate constant of chain transfer with monomer is 6.7 × 10?2 (M s)?1; the spontaneous β-hydride transfer rate constant is 4.7 × 10?2 s?1. The polymerization activity and stereospecificity of the catalyst are highest at 45°C, both decreasing with either higher or lower temperature. The stereoregular polymer have broad MW distributions, M?w/M?n = 2.8–5.7, and up to three crystalline modifications. The Tm of the s-PS polymerized at 0–90°C decreased from 261.8 to 241°C indicating thermally activated monomer insertion errors. The styrene polymerization behaviors were essentially insensitive to the dielectric constant of the medium.  相似文献   

14.
The catalytic activity of the complexes prepared by the reaction of Grignard reagents with ketones, esters, and an epoxide as polymerization catalysts of methyl and ethyl α-chloroacrylates was investigated. The modifiers which gave isotactic polymers were α,β-unsaturated ketones such as benzalacetophenone, benzalacetone, dibenzalacetone, mesityl oxide, and methyl vinyl ketone, and α,β-unsaturated esters such as ethyl cinnamate, ethyl crotonate, and methyl acrylate. Catalysts with butyl ethyl ketone, propiophenone, and propylene oxide as modifiers produced atactic polymers but no isotactic polymers. It was revealed that the complex catalysts having a structure ? C?C? O? MgX (X is halogen) gave isotactic polymers. The mechanism of isotactic polymerization was discussed. In addition, for radical polymerization of ethyl α-chloroacrylate, enthalpy and entropy differences between isotactic and syndiotactic additions were calculated to give ΔHi* ? ΔHs* = 910 cal/mole and ΔSi* ? ΔSs* = 0.82 eu.  相似文献   

15.
Propylene was polymerized with rac-ethylene-bis (1-η5-indenyl)dichlorozirconium/methylaluminoxane in solvents of different polarity. The poly (propylene) formed was separated by solvent extraction; 13C-NMR and DSC measurements were made on the polymer fractions. The poly(propylene) in each solvent fraction has its characteristic molecular weight steric pentad distributions, melting transition temperature, and enthalpy for fusion irrespective of the polymerization medium. The results suggest that the medium dielectric constant does not affect the polymerization rate or the intrinsic stereoselectivity, propagation and chain transfer rates a given catalytic species but can alter the occurrence of steric insertion errors through shifting of distributions of the propagating species producing poly(propylenes) of different stereoregularities. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
The observed change in the 10.38 GHz PMDR signal of pyrazine in durene at 1.6 K upon the application of a magnetic field of 0–500 G cannot be explained by the direct S1(n, π*)
T1(n, π*) intersystem crossing process. The observed results can be computer fitted if the crossing is assumed to involve an intermediate triplet state with zero-field parameters similar to those of the lowest π, π* state of substituted benzene. The relative probability of the direct to the indirect crossing to the different spin levels is concluded. The limitations of the method are discussed.  相似文献   

17.
The “borohydride/alkyl” (B/A) route initially reported for isoprene has been applied successfully to the polymerization of styrene. This method provides via an in situ approach an interesting tool for the assessment of the influence of a ligand on the performance of half-lanthanidocene catalysts. All systems lead to well-controlled oligomerization/polymerization processes. This method is thus a convenient tool for the controlled polymerization of styrene starting from a common trisborohydride precursor and commercial ligands. The influence of the nature of several ligands on the activity could be established, with trends corresponding to those obtained starting from the isolated precursors: HCpHCpPh3>HCp*(Cp=C5H5,CpPh3=1,2,4-Ph3C5H2,Cp*=C5Me5). These results suggest an influence of the electron donating ability of the ligand rather than steric requirements.  相似文献   

18.
Syndiospecific polymerization of styrene (S) was catalyzed by Bz4Ti/MAO (tetrabenzyltitanium/methylaluminoxane). The product was separated into syndiotactic polystyrene (s-PS) and atactic polystyrene (a-PS) by extraction of the latter with boiling 2-butanone. Over the broad range of catalyst concentrations, compositions, and polymerization temperatures, the catalytic activity is 150 ± 80kg PS (mol Ti mo S h)?1 with 89 ± 5% yield of s-PS (SY). The concentration of active species has been determined by radiolabeling. Only about 1.7% of Bz4Ti initiates syndiospecific polymerization at 60°C with values of rate constants for propagation and for chain transfer to MAO of 1.38 (M s)?1 and 5.2 × 10?4s?1, respectively. Nonspecific polymerization was initiated by 16.8% of the Ti having values of 0.056 (M s)?1 and 6.5 × 10?4 s?1 for the rate constants of propagation and transfer, respectively. The effect of solvent polarity on the polymerization was studied using toluene mixed with chlorobenzene of o-dichlorobenzene as solvents. An increase of effective dielectric constant from 2.43 to 5.92 reduces the polymerization activity by a factor of two and lowers SY to mere 39%. In 1 : 1 toluene/chlorobenzene solvent mixture, it was found that 1.3% and 26% of the Bz4Ti initiate syndiospecific and nonspecific polymerizations of styrene, respectively. The Bz4Ti/MAO catalyst is poor in both productivity and stereoselectivity.  相似文献   

19.
The dependence of exciplex emission spectra on the solvent polarity was studied for exciplexes with the Gibbs free energy of excited-state electron transfer, G * et , exceeding –0.1 eV (for pyrene, fluoranthene, 1,12-benzoperylene, and 9-cyanoanthracene with methoxybenzenes or dimethylnaphthalene). These exciplexes showed stronger changes in the spectral shift of exciplex emission and the extent of charge transfer with increasing solvent polarity than the exciplexes having more negative G * et values. The parameters (difference in energy of charge transfer (CT) and locally excited (LE) states in a vacuum, (H 0 22H 0 11), and the matrix element for electronic coupling of CT and LE states H 12and mrelated to the dipole moment of the CT state and the size of the exciplex) determining the extent of charge transfer, the spectral shift, and other properties of exciplexes were evaluated. The parameters H 12and mfor the exciplexes examined fall in the interval 0.1–0.5 and 1.0–1.7 eV, respectively, and the difference (H 0 22H 0 11) is proportional to G * et .  相似文献   

20.
The effect of the kind of transition‐metal catalyst on the extent of comonomer insertion in the syndiospecific complex‐coordinative copolymerization of styrene and para‐methylstyrene has been investigated. The results for the influence of the polymerization conditions have shown that there is no real difference between solution copolymerization in toluene and solvent‐free styrene copolymerization in bulk, with respect to the reactivity ratio for para‐methylstyrene (r2), under comparable conditions in the presence of methylaluminoxane and triisobutylaluminum and at low polymerization conversions. All the investigated catalysts lead to a preferred incorporation of para‐methylstyrene into the polymer chain in comparison with styrene and over the whole range of monomer compositions. The increasing capability of the different catalysts to provide copolymers with enhanced para‐methylstyrene concentrations can be summarized by the increasing r2 values for the copolymerization in bulk as follows: η5‐pentamethylcyclopentadienyl titanium trichloride < η5‐octahydrofluorenyl titanium trimethoxide < η5‐octahydrofluorenyl titanium tristrifluoroacetate < η5‐cyclopentadienyl titanium(N,N‐dicyclohexylamido)dichloride < η5‐cyclopentadienyl titanium trichloride. For a correlation between the catalyst structure and the comonomer insertion, the catalysts can be described by electronic effects (electrostatic charge of the transition‐metal atom) and steric effects (minimum structural cone angle). The results show that the steric properties of the transition‐metal complexes have the most important effect on the insertion of para‐methylstyrene into the copolymer. If the minimum structural cone angle of the ligand of the transition‐metal catalyst decreases, the incorporation of the comonomer para‐methylstyrene increases significantly. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2061–2067, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号