首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In the Ni(II)–S(IV)–O2 system in the region of pH > 8.4, both Ni(II) and S(IV) are simultaneously autoxidized, and when sulfur is consumed fully NiOOH precipitates. At pH > 8.4, ethanol has no effect on the rate, whereas ammonia strongly inhibits the reaction when pH > 7.0. The kinetics of the reaction, in both the presence and the absence of ethanol, is defined by the rate law where k is the rate constant, KO is the equilibrium constant for the adsorption of O2 on ? Ni(OH)2 particle surface. In ammonia buffer, the factor F is defined by where K, KOH, K1, K2, K3, and K4 are the stability constants of NiSO3, NiOH+, Ni(NH3)2+, Ni(NH3), Ni(NH3), and Ni(NH3), respectively. In unbuffered medium, the factor F reduces to The values of k and Ksp were found to be (1.3 ± 0.08) × 10?1 s?1 and (4.2 ± 3.5) × 10?16, respectively, at 30°C. A nonradical mechanism that assumes the adsorption of both SO32? and O2 on the ? Ni(OH)2 particle surface has been proposed. At pH ≤ 8.2, Ni(II) displays no catalytic activity for sulfur(IV)‐autoxidation and it is also not oxidized to NiOOH. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 464–478, 2010  相似文献   

2.
The kinetics of electron transfer from hexacyanoferrate(II) to tris(dimethylglyoximato)-nickelate(IV), Ni(dmg)32?, to produce Fe(CN)63? and Ni(dmgH)2, follows a pseudo-first-order disappearance in the Ni(IV). The pseudo-first-order rate constants kobs are linearly dependent on [Fe(CN)64?]0 in a fiftyfold range of 2 × 10?4?1 × 10?2M, and the average values of kobs/[Fe(CN)64?]0 range from 194M?1·s?1 at pH = 5.20 to 0.2M?1·s?1 at pH = 9.07 in aqueous medium at 35°C and μ = 0.57M. Results are interpreted in terms of a probable mechanism involving rate-determining outer sphere one-electron transfer steps from the reductant and one-protonated reductant species to the unprotonated and one-protonated Ni(IV) species present in solution. The more electrophilic one-protonated reductant species apparently reacts several orders of magnitude faster than the unprotonated one.  相似文献   

3.
Rates of solvolysis of ions [Co(3Rpy)4Cl2]+ with R = Me and Et have been measured over a range of temperatures for a series of water-rich water + methanol mixtures to investigate the effect of changes in solvent structure on the solvolysis of complexes presenting a largely hydrophobic surface to the solvent. The variation of the enthalpies and entropies of activation with solvent composition has been determined. A free energy cycle relating the free energy of activation in water to that in water + methanol is applied using free energies of transfer of individual ionic species from water into water + methanol. Data for the free energy of transfer of chloride ions ΔG(Cl?) from both the spectrophotometric solvent sorting method and the TATB method for separating ΔG(salt) into ΔG(i) for individual ions are used: irrespective of the source of ΔG(Cl?), in general, ?ΔG(Co(Rpy)4Cl2+) > ?ΔG(Co(Rpy)4Cl2+), where Rpy = py, 4Mepy, 4Etpy, 3Etpy, and 3Mepy, showing that changes in solvent structure in water-rich water + methanol mixtures generally stabilize the cation in the transition state more than the cation in the initial state for this type of complex ion. A similar result is found when the free energy cycle is applied to the solvolysis of the dichloro (2,2′,2″-triaminotriethylamine)cobalt(III) ion. The introduction of a Me or Et group on the pyridine ring in [Co(Rpy)4Cl2]+ has little influence on the difference {ΔG(Co(Rpy)4Cl2+)?ΔG(Co(Rpy)4Cl2+)} in water + methanol with the mol fraction of methanol < 0.20.  相似文献   

4.
Kinetics of the complex formation of chromium(III) with alanine in aqueous medium has been studied at 45, 50, and 55°C, pH 3.3–4.4, and μ = 1 M (KNO3). Under pseudo first-order conditions the observed rate constant (kobs) was found to follow the rate equation: Values of the rate parameters (kan, k, KIP, and K) were calculated. Activation parameters for anation rate constants, ΔH(kan) = 25 ± 1 kJ mol?1, ΔH(k) = 91 ± 3 kJ mol?1, and ΔS(kan) = ?244 ± 3 JK?1 mol?1, ΔS(k) = ?30 ± 10 JK?1 mol?1 are indicative of an (Ia) mechanism for kan and (Id) mechanism for k routes (‥substrate Cr(H2O) is involved in the k route whereas Cr(H2O)5OH2+ is involved in k′ route). Thermodynamic parameters for ion-pair formation constants are found to be ΔH°(KIP) = 12 ± 1 kJ mol?1, ΔH°(K) = ?13 ± 3 kJ mol?1 and ΔS°(KIP) = 47 ± 2 JK?1 mol?1, and ΔS°(K) = 20 ± 9 JK?1 mol?1.  相似文献   

5.
The results of comprehensive equilibrium and kinetic studies of the iron(III)–sulfate system in aqueous solutions at I = 1.0 M (NaClO4), in the concentration ranges of T = 0.15–0.3 mM, and at pH 0.7–2.5 are presented. The iron(III)–containing species detected are FeOH2+ (=FeH?1), (FeOH) (=Fe2H?2), FeSO, and Fe(SO4) with formation constants of log β = ?2.84, log β = ?2.88, log β = 2.32, and log β = 3.83. The formation rate constants of the stepwise formation of the sulfate complexes are k1a = 4.4 × 103 M?1 s?1 for the ${\rm Fe}^{3+} + {\rm SO}_4^{2-}\,\stackrel{k_{1a}}{\rightleftharpoons}\, {\rm FeSO}_4^+The results of comprehensive equilibrium and kinetic studies of the iron(III)–sulfate system in aqueous solutions at I = 1.0 M (NaClO4), in the concentration ranges of T = 0.15–0.3 mM, and at pH 0.7–2.5 are presented. The iron(III)–containing species detected are FeOH2+ (=FeH?1), (FeOH) (=Fe2H?2), FeSO, and Fe(SO4) with formation constants of log β = ?2.84, log β = ?2.88, log β = 2.32, and log β = 3.83. The formation rate constants of the stepwise formation of the sulfate complexes are k1a = 4.4 × 103 M?1 s?1 for the ${\rm Fe}^{3+} + {\rm SO}_4^{2-}\,\stackrel{k_{1a}}{\rightleftharpoons}\, {\rm FeSO}_4^+$ step and k2 = 1.1 × 103 M?1 s?1 for the ${\rm FeSO}_4^+ + {\rm SO}_4^{2-} \stackrel{k_2}{\rightleftharpoons}\, {\rm Fe}({\rm SO}_4)_2^-$ step. The mono‐sulfate complex is also formed in the ${\rm Fe}({\rm OH})^{2+} + {\rm SO}_4^{2-} \stackrel{k_{1b}}{\longrightarrow} {\rm FeSO}_4^+$ reaction with the k1b = 2.7 × 105 M?1 s?1 rate constant. The most surprising result is, however, that the 2 FeSO? Fe3+ + Fe(SO4) equilibrium is established well before the system as a whole reaches its equilibrium state, and the main path of the formation of Fe(SO4) is the above fast (on the stopped flow scale) equilibrium process. The use and advantages of our recently elaborated programs for the evaluation of equilibrium and kinetic experiments are briefly outlined. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 114–124, 2008  相似文献   

6.
The hexacyanoferrate(III)-thallium(I) reaction in aqueous acetic acid containing large concentrations of hydrochloric acid is considerably accelerated both by hydrogen and chloride ions as well as increasing acetic acid in the medium. The experimental results obey the rate law (1) where β1 to β6 are the cumulative stability constants of the species TlCl, TlCl, TlCl, HFe(CN), H2Fe(CN) and H3Fe(CN)6 respectively and ka and kb are the rate constants associated with the mono- and di-protonated oxidant species. The main active species are H2Fe(CN) and TlCl.  相似文献   

7.
Pseudo‐first‐order rate constants (kobs) for the cleavage of phthalimide in the presence of piperidine (Pip) vary linearly with the total concentration of Pip ([Pip]T) at a constant content of methanol in mixed aqueous solvents containing 2% v/v acetonitrile. Such linear variation of kobs against [Pip]T exists within the methanol content range 10%–∼80% v/v. The change in kobs with the change in [Pip]T at 98% v/v CH3OH in mixed methanol‐acetonitrile solvent shows the relationship: kobs = k[Pip]T + k[Pip], where respective k and k represent apparent second‐order and third‐order rate constants for nucleophilic and general base‐catalyzed piperidinolysis of phthalimide. The values of kobs, obtained within [Pip]T range 0.02–0.40 M at 0.03 M NaOH and 20 as well as 50% v/v CH3OH reveal the relationship: kobs = k0/(1 + {kn[Pip]/kOX[OX]T}), where k0 is the pseudo‐first‐order rate constant for hydrolysis of phthalimide, kn and kOX represent nucleophilic second‐order rate constants for the reaction of Pip with phthalimide and for the XO‐catalyzed cyclization of N‐piperidinylphthalamide to phthalimide, respectively, and [OX]T = [NaOH] + [OXre], where [OXre] = [OHre] + [CH3Ore]. The reversible reactions of Pip with H2O and CH3OH produce OHre and CH3Ore ions. The effects of mixed methanol‐water solvents on the rates of piperidinolysis of PTH reveal a nonlinear decrease in k with the increase in the content of methanol. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 33: 29–40, 2001  相似文献   

8.
A kinetic reinvestigation of the title redox system in aqueous alkaline media at 35°C and an ionic strength of 0.5 mol dm?3 shows that the reaction follows a pseudosecond-order Fe(CN) disappearance. While varying [phenol]0 and [OH?] exhibit a linear influence on the pseudo-second-order rate constant, varying[Fe(CN)]0 and [Fe(CN)]0, initially taken, have a complicated inhibitory effect on the same. The major phenoloxidation products isolated under a chosen condition are 2,2′- and 4,4′- dihydroxydiphenyl. Results are interpreted in terms of a probable mechanism which envisages a reversible formation, by the first one-electron transfer, of a reactive phenoxy radical (PhO˙) which on the second one-electron transfer forms a less reactive ion-pair intermediate (stabilized by the Fe(CN) produced) to decompose rate-determiningly to phenoxonium cation (PhO+) and Fe(CN), the product-formation steps being very rapid and kinetically indistinguishable.  相似文献   

9.
Kinetics and mechanism of the cerium(IV) oxidation of Cr(III) complexes of a series of macrocyclic (or pseudomacrocyclic) ligands with [14]-membered intraligand ring-sizes have now been investigated at I = 1.0 M (LiClO4) Temp. 30°C. The complexes of the formulation Cr(macrocycle)(X)(H2O) where X = CHCl2 and H2O, n = 0 or 1 undergo oxidation to Cr(VI) with the formation of chromium(IV) intermediates. The observed kinetic parameters for the Ce(IV) oxidation of Cr(III) macrocyclic complexes have been discussed in terms of changes brought about by the macrocyclic ligands on the Cr(III)—Cr(IV) redox potentials and in specific rates for Cr(IV)—Cr(V) conversion. On the basis of this study, it has been suggested that the trapping of Cr(IV) is easier when a macrocyclic ligand having a symmetrical intra-ligand ring size and unsaturation in the cyclic structure is coordinated equatorially. Cyclic voltammetric studies indicate the formation of Cr(IV) transient in the case of electrochemical oxidation of trans-Cr(Me4[14]tetraene)(H2O).  相似文献   

10.
Kinetics and mechanism of oxidation of β‐alanine by peroxomonosulfate (PMS) in the presence of Cu(II) ion at pH 4.2 (acetic acid/sodium acetate) has been studied. Autocatalysis was observed only in the presence of copper(II) ion, and this was explained due to the formation of hydroperoxide intermediate. The rate constant for the catalyzed (k) and uncatalyzed (k) reaction has been calculated. The kinetic data obtained reveal that both the reactions are first order with respect to [PMS]. k values initially increase with the increase in [β‐alanine] and reach a limiting value, but k values decrease with the increase in [β‐alanine]. k values increase linearly with the increase in [Cu(II)], whereas k values increase with [Cu(II)]2. Furthermore, k values are independent of [acetate], but k values decrease with the increase in acetate. A suitable mechanism has been proposed to explain the experimental observation. The reaction has been studied at different temperatures, and the activation parameters are calculated. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 40: 44–49, 2008  相似文献   

11.
Existing data on the self-reactions of tertiary peroxy radicals RO2 has been reanalyzed and corrected to deduce Arrhenius parameters for both termination and nontermination paths. For R = t-Butyl, these are logkt(M?1sec?1) = 7.1 - (7.0/θ) and logknt(M?1sec?1) = 9.4 - (9.0/θ), respectively, different from those recommended by other authors. The higher magnitudes observed for termination processes of tertiary peroxy radicals like those of cumyl and 1,1-diphenylethyl have been discussed in terms of a much greater cage recombination of cumyloxy radicals as contrasted with t-butoxy radicals. It is shown that for benzyl peroxy radicals, the R—O bond dissociation energy is sufficiently low (18–20 kcal) that reversible dissociation into R˙ + O2 opens a competing second-order path to fast recombination R˙ + RO → ROOR. This path is probably not important for cumyl peroxy radicals under usual experimental conditions but can become important for 1,1-diphenyl ethyl peroxy radicals at (O2) < 10?3M. At very low RO concentrations (<10?5M), in the absence of added O2, an apparent first-order disappearance of RO can occur reflecting the rate determining breaking of the cumyl—O bond followed by the second step above. The thermochemistry of RO is used to show that the reaction of R2O4 → 2RO + O2 must be concerted and cannot proceed via RO which is too unstable and cannot form even from RO˙ + O2.  相似文献   

12.
The kinetics of the acqueous-phase reactions of the free radicals ·OH, ·Cl, and SO· with the halogenated acetates, CH2FCOO?, CHF2COO?, CF3COO?, and with CH2ClCOO?, CHCl2COO?, CCl3COO? were investigated. Generally, the reactivity decreases with increasing halogen substitution and is in the order k(·OH) > k(SO·) > k(·Cl), but there is no general relation between the effect on reactivity of chlorine and fluorine substitution. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
The kinetics of the oxidation of lactic and atrolactic acids by ceric sulfate have been studied in the medium HClO4-Na2SO4-NaClO4 at 25.0°C and ionic strength 2.0 mol dm?3 over a wide range of organic substrate (HL), hydrogen and bisulfate ion concentrations. The redox reactions proceed significantly through three simultaneous paths involving intermediate complexes between the reactive cerium(IV) species and the organic substrate according to the following expression where kobs indicates the observed pseudo-first-order rate constant, b and c are rate constants relative to that for the path associated with the term [H+] in the numerator, and A' is a quantity depending on the [H+] and [HSO] concentrations. Moreover, three equilibria involving cerium(IV) and HSO (or SO) ions are important from a kinetic point of view, the cumulative equilibrium constants being in the ratios β1: β2: β3 = d1: e1: f1. The present data are compared with those obtained previously for the cerium(IV) oxidation of glycolic acid and the substituent effects discussed.  相似文献   

14.
The mechanism of acid catalyzed decomposition of peroxodisulfate, (S2O) in aqueous perchlorate medium involves the hydrolysis of the species H2S2O8 and HS2O and the homolysis of the species H2S2O8, HS2O and S2O at the O? O bond. The overall rate law when 1.4M > [HClO4] > 0.1M is The constants k′ and k″ contain the hydrolysis and homolysis rate constants of HS2O8? and H2S2O8, respectively. With added Ag(I), the acid catalyzed and Ag(I) catalyzed reactions take place independently. Ag(I) catalyzed decomposition appears to involve the species AgS2O (aq).  相似文献   

15.
Ultraviolet absorption spectra have been characterized for the acetyl-h3 and acetyl-d3 radicals, which were generated by the flash photolysis of the corresponding acetones. The spectra are broad and intense, with values of the extinction coefficient at the respective maxima estimated as: ?CH3CO(215) = (1.0 ± 0.1) × 104 L/mol·cm and ?CD3CO(207.5) = (1.0 ± 0.05) × 104 L/mol·cm. Rate constants for the reactions of mutual interaction were estimated as: k = 3.5 × 1010 L/mol·s and k = 3.4 × 1010 L/mol·s. Rate constants for the reactions of cross interaction were estimated as: k = 8.6 × 1010 L/mol·s and k = 5.2 × 1010 L/mol·s. The related values of the cross interaction ratios k/(kk)1/2 = 2.6 and k/(kk)1/2 = 1.6 do not differ significantly from the statistical value of 2. The participation of the radical displacement reactions was estimated in terms of the fractions k/k = 0.38 and k/k = 0.47. Corroborative spectra were obtained from the flash photolysis of methyl ethyl ketone and biacetyl, and the relative rates of the competing primary processes were estimated from the relative peak heights of the acetyl and methyl radicals in each system.  相似文献   

16.
The recent experiments on the chloride-assisted dealkylation of alkylcobalamins by a variety of oxidants (IrCl, AuCl, Fe(H2O)5Cl2+, and PtCl), which are scattered in several previous publications, and their general kinetic characteristics are summarized. The kinetic studies are also extended to include the dealkylations of (methylaquo)?3,5,6-trimethylbenzimidazolylcobamide and protonated base-off ethylcobalamin by IrCl (1.0M Cl?) and by Fe(III) ions at 0.1M Cl?, and the demethylation of (methylaquo)?3,5,6-trimethylbenzimidazolylcobamide by AuCl (1.0M Cl?). This extension is in an effort to substantiate the general mechanism which has been previously proposed for these oxidative dealkylations. The general kinetic characteristics are described in terms of a preassociation of the reactants, followed by a rate-determining electron-transfer process to yield the R-B radical, which then undergoes further reactions to produce the products observed. The overall reactions are discussed within the framework of chlorine-bridging inner sphere electron-transfer reactions.  相似文献   

17.
Studies of the reaction of Br + propylene to produce HBr and allyl radical were made using VLPR (Very Low Pressure Reactor) over the range 263–363 K. Apparent bimolecular rate constants k were found to vary in an inverse manner with the initial concentration of bromine atoms introduced into the reactor. Plots of k against [Br] give straight lines whose intercepts were taken to be the true bimolecular, metathesis rate constant k1. The reaction scheme is where k2 ? k1 and k?1 [HBr] is negligibly small under our conditions. Arrhenius parameters for k1 were assigned for linear and bent transition states and shown to give excellent fits to the observed intercepts. where θ = 2.303 RT (kcal mol?1). The dependence of k on [Br] is accounted for in terms of the reactivity of Br* (2P1/2) produced in the microwave discharge. The activation energy for the metathesis reaction of Br* with propylene is shown to be very small.  相似文献   

18.
In the radiolysis of water vapor containing small concentrations of cyclohexane, the principal products which account for about 98% of all end products are found to be hydrogen, cyclohexene, and bicyclohexyl. Cyclohexene and bicyclohexyl yields were determined over a range of temperatures (70–200°C), total pressures (50–2400 torr), and total doses (0.15–2.0 Mrad). The disproportionation–combination ratio k/k for c-C6H11 radicals could be determined as 0.56 ± 0.01 from the ratio of cyclohexene to bicyclohexyl yield. By using c-C6D12, the ratio k/k for c-C6D11 radicals is found to be 0.38 ± 0.01. Comparison of the reactivity pattern of C6H11 and C6D11 radicals leads to (k)/(k)/(k/k) = 1.47 ± 0.02. The corresponding values for the reactions of c-C6H11 with c-C6D11 were also determined.  相似文献   

19.
The vibrationally excited molecules CF3CH and CF3CD have been synthesized by radical combination (produced by ketone photolysis), and HF and DF elimination from them studied as a function of temperature and pressure. Using RRK theory many calculations have recently been made of critical energies for the decomposition of "hot" fluoroethane molecules. Taking CF3CH as an example, it is concluded that the empiricism involved in such calculations renders results of doubtful significance. The non-equilibrium kinetic isotope effect is kH/kD = 3.1 at 470°K. Arrhenius parameters are also presented for radical abstraction reactions from the ketone source molecules.  相似文献   

20.
The kinetics of the solvolytic aquation of cis-(Bromo) (imidazole) bis(ethylenediamine) cobalt (III) and cis-(Bromo) (N-methylimidazole) bis(ethylenediamine) cobalt(III) have been investigated in aqueous methanol media with methanol content 0–80% by weight and at temperatures 40–55°C. The pseudo-first order rate constant decreases with increasing methanol content. Plots of log k vs. D (where Ds is the bulk-dielectric constant of the solvent mixture) and log k vs. the Grunwald-Winstein Y-solvent parameter are nonlinear, the curvature of the plots is relatively more significant for the imidazole complex. The plots of log k vs. molfraction of methanol (XMeOH) for both the substrates also deviate from linearity, the deviation being less and less marked, particularly for the N-methyl imidazole complex, as the temperature is increased. Hence preferential solvation phenomenon appears to be less significant when the N-H proton of imidazole is replaced by -CH3 group. The plots of calculated values of the transfer free energy of the dissociative transition state, cis-{[(en)2Co(B)]3+}* (B = imidazole, N-methylimidazole), relative to that of the initial state, cis-[Co(en)2(B)Br]2+, for the transfer of the ions from water to the mixed solvent, against XMeOH exhibit maxima at XMeOH = 0.06, 0.27, and 0.12, 0.36 and minima at XMeOH = 0.12 and 0.19 for cis-[(en)2Co(imH)Br]2+ and its N-methylimidazole analogue respectively which are in keeping with the solvent structural changes around the initial state and transition state of these substrates as the solvent composition is varied. Plots of activation enthalpy and entropy against molfraction of the solvent mixtures exhibit maxima and minima. This type of variations of the activation parameters, ΔH and ΔS, with XMeOH speaks of the enthalpy and entropy changes associated with the solvent-shell reorganization of the complex ions both in the initial and in the transition states which contribute appreciably to the overall activation enthalpy and entropy of the aquation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号