首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(metal phthalocyanine)imides of copper, cobalt, nickel, and zinc were synthesized by the reaction of metal phthalocyanino tetramines with benzophenone tetracarboxylic dianhydride. These polymers were characterized by elemental analyses and IR, TGA, and inherent viscosity studies. Noteworthy features of these phthalocyanine polymers are their remarkable thermal and thermooxidative stabilities with char yields at 800°C that range from 78 to 83% in a nitrogen atmosphere. The relative thermal stabilities of these polymers have been evaluated by activation energy measurements.  相似文献   

2.
This work presents novel colorless polyimides (PIs) derived from 1R,2S,4S,5R‐cyclohexanetetracarboxylic dianhydride (H″‐PMDA). Isomer effects were also discussed by comparing with PI systems derived from conventional hydrogenated pyromellitic dianhydride, that is, 1S,2R,4S,5R‐cyclohexanetetracarboxylic dianhydride (H‐PMDA). H″‐PMDA was much more reactive with various diamines than H‐PMDA, and the former led to PI precursors with much higher molecular weights. The results can be explained from the quite different steric structures of these isomers. The thermally imidized H″‐PMDA‐based films were colorless regardless of diamines because of inhibited charge‐transfer interaction. In particular, the H″‐PMDA/4,4′‐oxydianiline system simultaneously achieved a very high Tg exceeding 300 °C, high toughness (elongation at break > 70%), and good solution processability. In contrast, the H‐PMDA‐based counterparts were essentially insoluble. The outstanding solubility of the former probably results from disturbed chain stacking by its nonplanar steric structure. An advantage of chemical imidization process is also proposed. In some cases, a copolymerization approach with an aromatic tetracarboxylic dianhydride was effective to improve the thermal expansion property. The results suggest that the H″‐PMDA‐based PI systems can be promising candidates for novel high‐temperature plastic substrate materials in electronic paper displays. A potential application as optical compensation film materials in liquid crystal displays (LCD) is also proposed in this work. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
Metal phthalocyanine oligomers that possess peripheral carboxylic acid groups were prepared by the reaction of pyromellitic dianhydride, a metal salt, urea, and a catalyst. These materials have blue to purple colors with a metallic luster and are soluble in sulfuric acid, dimethylsulfoxide, dimethylformamide, and dimethylacetamide. Their thermal stability is high in an anaerobic atmosphere with char yields of 80–85% at 800°C. Elemental, spectral, and titrimetric analyses and thermal studies were carried out to characterize them.  相似文献   

4.
Polycondensations of 1,4,5,8-naphthalenetetracarboxylic acid (NTCA) with both 3,3′-diaminobenzidine (DAB) and 1,2,4,5-tetraaminobenzene tetrahydrochloride (TAB) in polyphosphoric acid (PPA) were found to produce soluble polymers which exhibit excellent thermal stabilities. Polymer structures were deduced from infrared, thermal, and elemental analyses of model compounds and polymers. Polymer derived from TAB had a ladder-type structure. Polymers with solution viscosities near 1 or above (determined in H2SO4) were obtained from polymerizations near 200°C., and analysis showed these to possess a very high degree of completely cyclized benzimidazobenzophenanthroline structure. Less vigorous reaction conditions gave polymers with lower solution viscosities which appeared to be less highly cyclized. Low-viscosity polymer was also prepared from DAB and NTCA by solid-phase polycondensation. Some advancements in the solution viscosities of polymers synthesized from DAB in PPA were caused by second staging in the solid phase.  相似文献   

5.
Gas-separating membrane characteristics of polyimide films composed of the common fragment of benzophenone-3,3′,4,4′-tetracarboxylic dianhydride and diamines of varying structure were studied. Permeability coefficient P, diffusion coefficient D, and solubility coefficient S for H2, CO, CO2, and CH4 were determined. The polyimide derived from m-phenylenediamine exhibited the best gas-separating properties. A relationship between the chain rigidity, free volume, and transport parameters (P, D, S, and selectivity) of polyimide was established on the basis of the data. It was shown that there is an optimal chain rigidity for the studied polyimides that results in polymer structurization during film preparation and corresponds to high separation selectivity.  相似文献   

6.
Organosoluble polyimides were synthesized with the alicyclic dianhydride 1,8‐dimethylbicyclo[2,2,2]oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride and aromatic diamines. The polyimides possessed good solubility both in strong dipolar solvents and in common solvents; the thermal decomposition temperature of the polyimides exceeded 420 °C. Strong and flexible films of the polyimides, with the cutoff of ultraviolet–visible absorption lower than 310–320 nm, exhibited good features as the alignment layers for nematic liquid crystals with pretilt angles of 1.5–2.9°. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 110–119, 2002  相似文献   

7.
8.
A novel method for the preparation of an asymmetric fluorinated aromatic diamine, 3,4′-bis(4-amino-2-trifluoromethylphenoxy)-benzophenone was investigated. This new diamine containing trifluoromethyl side group was synthesized from the nucleophilic substitution reaction of 2-chloro-5-nitrobenzotrifluoride and 3,4′-dihydroxybenzo phenone in the presence of potassium carbonate, followed by catalytic reduction with SnCl2·6H2O and concentrated hydrochloric acid. This novel diamine was used to react with different commercially available aromatic tetracarboxylic dianhydrides to prepare polyimides via thermal or chemical imidization. The polyimide properties such as inherent viscosity, solubility, thermal and surface properties were investigated to illustrate the contribution of the trifluoromethyl group and the asymmetry structure of the polyimide. The polyimides obtained had good thermal stability and the glass transition temperature values ranged from 225 to 267 °C. All of these novel polyimides held 10% weight loss at the temperature above 543 °C in air and left more than 47% residue even at 800 °C in nitrogen. The inherent viscosities of the obtained polyimides were above 0.73 dL/g and were easily dissolved in both polar, aprotic solvents and some low-boiling-point solvents. Moreover, these PI films had dielectric constants of 2.94-3.53 (1 kHz), with moisture absorption in the range of 0.07-0.34 wt%. In comparison of the PIs (5) series with the analogous symmetric PIs (6) series based on 4,4′-bis(4-amino-2-trifluoromethylphenoxy)-benzophenone, the (5) series revealed better solubility, low dielectric constant and moisture absorption.  相似文献   

9.
A novel kind of aromatic diamine,N-(4-(4-(2,6-diphenyl pyridine-4-yl)phenoxy)phenyl)-3,5-diaminobezamide (DPDAB),was synthesized via aromatic nucleophilic substitution of 3,5-dinitrobenzoylchloride with 4-(4-(2,6- diphenylpyridine-4-yl)phenoxy)aniline(DPPA),followed by palladium-catalyzed hydrazine reduction.This monomer was used to prepare polyimides(PIs)based on reaction with several commerically avaiable tetracarboxylic dianhydrides such as pyromellatic dianhydride(PMDA),benzophenone tetracarboxylic acide dianhydride(BTDA)and bicycle[2.2.2]oct-7-enc- 2,3,5,6-tetracarboxylic dianhydride(BCDA).These PIs had inherent viscosity in the range of 0.34-0.76 dL/g and showed good solubility in various aprotic polar solvents.The glass-transition tempratures(T_gs)of the PIs were in the range of 184-302℃,and showed high thermal stability with 10%weight loss in the temperature range of 360-500℃under nitrogen atmosphere.  相似文献   

10.
Benzofuro[2,3-b]benzofuran-2,3,8,9-tetracarboxylic dianhydride (BBTDA) is introduced as a monomer for the synthesis of a series of novel polyimides with enhanced high thermal stability. Polyimides derived from BBTDA and aromatic diamines showed high glass transition (Tg>296 °C) and degradation (T5>455 °C) temperatures, and were soluble in organic solvents (i.e. N-methyl pyrrolidone (NMP), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc)). The polymerization yielded high-molecular-weight polyimides with inherent viscosities ranging from 1.75 to 2.14 dl/g. The polymers were characterized by IR and elemental analysis.  相似文献   

11.
A new approach to obtain imide‐containing elastic polymers (IEPs) via elastic and high‐molecular‐weight polyureas, which were prepared from α‐(4‐aminobenzoyl)‐ω‐[(4‐aminobenzoyl)oxy]‐poly(oxytetramethylene) and the conventional diisocyanates such as tolylene‐2,4‐diisocyanate(2,4‐TDI), tolylene‐2,6‐diisocyanate(2,6‐TDI), and 4,4′‐diphenylmethanediisocyanate (MDI), was investigated. IEP solutions were prepared in high yield by the reaction of the polyureas with pyromellitic dianhydride in N‐methyl‐2‐pyrrolidone (NMP) at 165°C for 3.7–5.2 h. IEPs were obtained by the thermal treatment at 200°C for 4 h in vacuo after NMP was evaporated from the resulting IEP solutions. We assumed a mechanism of the reaction via N‐acylurea from the identification of imide linkage and amid acid group in IEP solutions. NMR and FTIR analyses confirmed that IEPs were segmented polymers composed of imide hard segment and poly(tetramethylene oxide) (PTMO) soft segment. The dynamic mechanical and thermal analyses indicated that the IEPs prepared from 2,6‐TDI and MDI showed a glass‐transition temperature (Tg ) at about −60°C, corresponding to Tg of PTMO segment, and suggested that microphase‐separation between the imide segment and the PTMO segment occured in them. TGA studies indicated the 10% weight‐loss temperatures (T10) under air for IEPs were in the temperature range of 343–374°C. IEPs prepared from 2,6‐TDI and MDI showed excellent tensile properties and good solvent resistance. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 715–723, 2000  相似文献   

12.
Poly(urethane-imide)s were prepared using amine-blocked-polyurethane (PU) prepolymer and pyromellitic dianhydride. The PU prepolymers were prepared by the reaction of different diols (polypropyleneoxy glycol, polytetramethyleneoxy glycol, polycaprolactonediol and hydroxyl terminated polybutadiene) and different diisocyanates (2,4-tolylene diisocyanate, 1,4-phenelene diisocyanate, 1,6-hexamethylene diisocyanate, isophorone diisocyanate and 4,4-methylenebis(cyclohexyl)isocyanate) and end capped with N-methylaniline. The polymerization was faster with aromatic isocyanates than with aliphatic isocyanates. The effect of imide content on the thermal and mechanical properties was studied. The poly(urethane-imide)s were characterized by FTIR, GPC, TGA and for dynamic and static mechanical properties. Weight average molecular weight (Mw) of the polymers did not vary significantly with change in -NCO/-OH ratio where as number average molecular weight (Mn) increased with increasing -NCO/-OH ratio, correspondingly, the dispersity (PD) decreased. Polymers with higher hard segment content exhibited higher glass transition temperature. The thermal stability of the PU was found to increase significantly by the introduction of imide component.  相似文献   

13.
A new kind of pyridine-bridged aromatic dianhydride monomer, 4-phenyl-2,6-bis[4-(3,4-dicarboxyphenoxy)phenyl]-pyridine dianhydride (PPDA), was successfully synthesized by modified Chichibabin reaction of benzaldehyde and substituted acetophenone, 4-(3,4-dicyanophenoxy)-acetophenone (DCAP), followed by acidic hydrolysis of the intermediate tetranitrile and cyclodehydration of the resulting tetraacid. The pyridine-bridged aromatic dianhydride was employed to synthesized a series of new pyridine-containing polyimides by polycondensation with various aromatic diamines in N-methyl-2-pyrrolidone (NMP) via the conventional two-step method, i.e. ring-opening polycondensation forming the poly(amic acid)s and further thermal or chemical imidization forming polyimides. The inherent viscosities of the resulting polyimides were in the range of 0.49-0.63 dL/g, and most of them were soluble in aprotic amide solvents and cresols, such as N,N-dimethylacetamide (DMAc), NMP, and m-cresol, etc. Meanwhile, strong and flexible polyimide films were obtained, which have good thermal stability with the glass transition temperatures (Tg) of 223-256 °C, the temperature at 5% weight loss of 523-569 °C, and the residue at 700 °C of 52.1-62.7% in nitrogen, as well as have outstanding mechanical properties with the tensile strengths of 70.7-97.6 MPa and elongations at breakage of 7.9-9.7%. Wide-angle X-ray diffraction measurements revealed that these polyimides were predominantly amorphous.  相似文献   

14.
From imidazole-blocked 2,5-bis[(n-alkyloxy)methyl]-1,4-benzene diisocyanates and pyromellitic dianhydride a series of new rigid-rod polyimides (Cn-PY-PI; n = 4, 6, 8) having linear and flexible (alkyloxy)methyl ((SINGLE BOND)CH2OCnH2n + 1; n = 4, 6, 8) side chains were prepared and characterized and their properties were measured and discussed with regard to effects of side chains. Incorporation of the side chains onto the rigid main chain greatly enhanced the solubility and fusibility of the polymers, and melting point of C8-PY-PI was determined to be 277°C. The UV-VIS absorption behavior was independent of side-chain length. TGA thermograms revealed a two-step pyrolysis behavior, in which the side chains split off separately at lower temperatures. X-ray diffractograms showed that all the polyimides are crystalline at room temperature. Sharp reflections in small-angle region obviously indicated the presence of a layered crystal structure. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The reaction of phthalic thioanhydride and aniline yielded N-phenylphthalimide quite readily. The reaction was strongly dependent on solvent and temperature. Various additives tried as a reaction promoter were almost ineffective. By the extension of the model reaction, polyimides were prepared in a simple one-step synthesis from pyromellitic dithioanhydride and aromatic diamines in dimethylacetamide or other solvents. Polymers with inherent viscosity up to 0.3 in concentrated sulfuric acid were obtained in approximately quantitative yield.  相似文献   

16.
A novel diamine with built-in sulfone, ether, and amide structure was prepared via three-step reactions. Nucleophilic reaction of 4-aminophenol with 4-nitrobenzoyl chloride in the presence of propylene oxide led to preparation of N-(4-hydroxy phenyl)-4-nitrobenzamide (HPNB). The nitro group of this compound was reduced with hydrazine and Pd/C to afford 4-amino-N-(4-hydroxy phenyl)benzamide (AHPB). Two moles of AHPB were reacted with bis-(4-chloro phenyl)sulfone to provide a novel sulfone ether amide diamine (SEAD). All the prepared compounds were characterized by common spectroscopic methods. The prepared diamine (SEAD) used to prepare related polyimides by reaction with different aromatic dianhydrides. The obtained poly(sulfone ether amide imide)s were characterized and their properties were studied.  相似文献   

17.
Abstract

A number of new condensation polymers with acetal units in the main chain and having linear and ladder-form structure and high thermal stability were synthesized by solution polycondensation of dihydroxyaromatic compounds with malonaldehydetetramethyl acetal as a reactive protected 1,3-dicarbonyl compound. Optimal conditions for polycondensation were obtained via study of the model compounds. In order to obtain high molecular weight polymers, general investigations on the influence of reaction conditions, such as monomer concentration and reaction temperature were carried out. All polymers were obtained in high yields and moderate inherent viscosity ranging from 0.25 to 0.41?dL/g. The proposed chemical structures of condensation polymers were confirmed by 1H-NMR, 13C-NMR, FTIR spectroscopies, TGA, and DSC. Thermal analysis indicated that these polymers are stable up to 360?°C, and a 10% weight loss (T10) were recorded on the TG curves in the temperature range of 381–411?°C in nitrogen atmosphere, indicating their good thermal stability.  相似文献   

18.
A new diamine monomer containing fluorene unit, 3,5‐diamino‐N‐(9H‐fluoren‐2‐yl)benzamide was successfully synthesized via the condensation of 2‐aminofluorene and 3,5‐dinitrobenzoyl chloride and subsequent reduction of the dinitro compound. A series of novel aromatic polyimides having pendent fluorenamide moieties were prepared from the reaction of the diamine monomer and various tetracarboxylic dianhydrides by a conventional two‐step polymerization process. The polyimides were obtained in quantitative yields with inherent viscosities of 0.33–0.44 dl/g. The resulting polymers dissolved in N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide. The glass transition temperature of these polymers was in the range of 261–289°C. They were fairly stable up to a temperature around 450°C and lost 10% weight in the range of 498–556°C in nitrogen. The UV–vis absorption spectra showed that all of the polymers had absorption maxima around 320 nm. Cyclic voltammograms of the polyimides revealed an oxidation wave with a peak around 1.3 V. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Polyamido acids have been synthesized from pyromellitic dianhydride and dihydrazides of terephthalic, isophthalic, sebacic, and adipic acids. The polyamido acids obtained have been cyclized at 220° C, and it has been shown by IR spectroscopy that the polymers contain five-membered imide rings.  相似文献   

20.
New routes for the synthesis of high Tg thermally stable polymer foams with pore sizes in the nanometer regime have been developed. Foams were prepared by casting well-defined microphase-separated block copolymers comprised of a thermally stable block and a thermally labile material. At properly designed volume fractions the morphology provides a matrix of the thermally stable material with the thermally labile material as the dispersed phase. Upon thermal treatment, the thermally unstable block undergoes thermolysis generating pores, the size and shape of which are dictated by the initial copolymer morphology. Triblock copolymers comprised of a high Tg, amorphous polyimide matrix with poly(propylene oxide) as the thermally decomposable coblock, were prepared. The copolymer synthesis was conducted through the poly(amic acid) precursor and subsequent cyclodehydration to the polyimide by either thermal or chemical means. Dynamic mechanical analysis confirmed microphase separated morphologies for all copolymers, irrespective of the propylene oxide block lengths investigated. Upon decomposition of the thermally labile coblock, a 9–18% reduction in density was observed, consistent with the generation of a foam which was stable to 400°C. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号