首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Polyamides and polyesters based on neocarboranedicarboxylie dichloride and previously not described have been prepared by low-temperature polycondensation in solution and characterized. In preparing the polyamides, the following diamines were used: benzidine, hexamethylenediamine, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfide, and hydroquinone diaminodiphenyl ester. Polyesters were obtained by using the following diols: phenolthalein, hydroquinone, 4,4′-dihydroxydiphenylpropane, 9,9-dihydroxydiphenylfluorene, 1,6-hexanediol, and ethylene glycol. The resulting neocarborane polyesters melt and are easily soluble in tetrahydrofuran, amide solvents, and chloroform. The neocarborane polyamides described do not melt, are readily soluble in tetrahydrofuran and dimethylformamide, and form transparent films; they are thermostable in an inert at mosphere at high temperatures.  相似文献   

2.
Polyamides were synthesized at ?60°, ?40°, ?20°, and 0°C from sebacyl bisketene and 1,6-hexamethylenediamine in either acetone or methylene chloride. At the lower reaction temperatures oligomers predominated in solution but at 0°C the product was crosslinked. The polyamides were subjected to m-cresol extraction at elevated temperatures for up to 14 days. The m-cresol soluble and insoluble fractions were characterized by weight, infrared spectroscopy, dilute solution viscosity, and gel permeation chromatography. Infrared analysis of the soluble and insoluble portions showed the degree of branching of the polyamide, identified the branching point at the secondary amide proton position, and gave an indication of the degree of branching required before insoluble products resulted. Dilute solution viscosity and gel permeation chromatography were used to demonstrate the existence of low molecular weight (Mw) oligomer species in the soluble portion. Differential scanning calorimetry experiments revealed that polyamides synthesized below their glass transition temperature would not crystallize which resulted in abnormal thermal characteristics. Annealing at elevated temperatures allowed crystallization to occur and the expected thermal character to develop.  相似文献   

3.
A series of ferrocene-containing polyesters and polyamides were prepared by refluxing 1,1′-dichlorocarbonylferrocene with various diols and primary diamines in xylene–pyridine solvent. The polyamides were all solids, but some of the polyesters were liquids. Reported are the infrared spectra and solubility characteristics of all the polymers and, where possible, the molecular weight and molecular weight distributions. In general, these polyamides and polyesters were of relatively low molecular weight (below 4000), but the polyesters were readily chain extended and crosslinked by di- and triisocyanates. Elemental analyses are reported for all the polymers prepared.  相似文献   

4.
Phosphorus-containing polyamides and polyesters, which had tricyclic fused rings (phenothia-phosphine rings) in the main chain, were prepared and the properties of the resulting polymers were examined. These polymers were obtained at highly reduced viscosities in satisfactory yields by the polycondensation of 2,8-dichloroformyl-10-phenylphenothiaphosphine 5,5,10-trioxide with aromatic diamines or bisphenols. The polyamides and polyesters were soluble in polar aprotic solvents such as dimethylacetamide and N-methyl-2-pyrrolidone; the polyesters were also soluble in chloroform. The polymers exhibited good heat resistance. The phenothiaphosphine-containing polyamides and polyesters self-extinguished immediately when flame was removed and were highly flame-resistant. The polyester obtained from bisphenol A showed a limiting oxygen index value of 43.5.  相似文献   

5.
Silicon-containing polyamides and polyesters of a new type have been synthesized. They contain phenoxasilin rings with double-stranded structure. The polymers were synthesized by the interfacial polycondensation of 2,8-dichloroformyl-10,10-diphenylphenoxasilin with diamines and bisphenols, and were obtained in nearly quantitative yields. Their reduced viscosities were in the range of 0.53–1.47 dl g?1 m dimethylformamide (DMF), m-cresol or chloroform. Some of the polyamides were soluble in polar aprotic solvents such as DMF and N-methyl-2-pyrrolidone (NMP) and the polyesters had good solubility in chloroform, phenol-sym tetrachloroethane (60:40 by wt %) and acidic solvents (m-cresol and nitrobenzene). The polymers hardly dissolved in cone. H2SO4 and some of them coloured in it. Only the polyester having sulphide bonds was soluble in benzene in addition to the above organic solvents. These polymers hardly degraded below 400° except for the polyamides derived from aliphatic diamines. The polymers from aliphatic diamines melted at 290–325°; the other polyamides and the polyesters decomposed without melting.  相似文献   

6.
A Phenazasiline ring was incorporated into a polymer backbone by polycondensation of 2,8-dichloroformyl-5,10-dihydro-5-methyl-10,10-diphenylphenazasiline (V) with aromatic diamines or bisphenols, and phenazasiline-containing polyamides and polyesters were obtained. The polyamides were prepared by low-temperature solution polycondensation in N-methyl-2-pyrrolidone (NMP) in the presence of lithium chloride. The polyesters were synthesized by interfacial polycondensation in a mixture of 1,2-dichloroethane and aqueous alkali in the presence of tetrabutylammonium chloride as an accelerator. These reaction conditions gave the corresponding polymers with high viscosities. The phenazasiline-containing polyamides exhibited good solubilities in polar aprotic solvents such as dimethylformamide, dimethylacetamide, and NMP, and also in m-cresol, although the polyesters showed limited solubilities in organic solvents. Under nitrogen, the phenazasiline-containing polyamides and polyesters showed little degradation below 400°C and had good heat resistance.  相似文献   

7.
8.
A series of new Schiff base polyamides(PAs) were synthesized by polycondensation of benzilbisthiosemicarbazone diamine(LH6) with different commercially available aliphatic and aromatic diacid chlorides. The monomer and all the PAs were characterized by FTIR,1H-NMR,and elemental analysis.The prepared polyamides showed inherent viscosities in the range of 0.30-0.36 dL/g in DMF at 25℃,indicating their moderate molecular weight.The PAs were completely soluble in aprotic polar solvents such as dimethylformamide(DMF),N-methylpyrolidone(NMP), tetrachloroethane(TCE),dimthylsulfoxide(DMSO) and also in H2SO4 and partially soluble in THF,acetone and chloroform at room temperature.Thermal analysis showed that these PAs were practically amorphous and exhibited 10%weight loss above 220℃.  相似文献   

9.
Six new polyamides have been prepared either by polymerization in solution or by interfacial polymerization by reacting perchloroterephthaloyl dichloride with aromatic diamines. The polymers were characterized by i.r. spectroscopy, elemental analysis, DSC, and TGA. The glass transition temperature, the melting temperature, and the thermal decomposition temperature have been determined. In order to estimate the molecular weights, intrinsic viscosities were determined. Some of the polymers showed high thermal stability.  相似文献   

10.
Polyesters have been synthesized by polycondensation of terephthaloyl dichloride or isophthaloyl dichloride with hindered biphenols and hydroquinones which contain bulky substituents (methyl and phenyl) on the arylene ring. Polymers derived from isophthaloyl dichloride have better solubility and lower glass transition temperatures than the corresponding polymers obtained from terephthaloyl dichloride. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
<正>Aromatic/aliphatic polyamides were synthesized from a diamine monomer,2,3-bis-p-aminophenylquinoxaline (Ⅳ),based on quinoxaline and various dicarboxylic acids of aliphatic,aromatic and heterocyclic.The diamine and polyamides were characterized by elemental analysis,FTIR and ~1H-NMR.The solubility of the polyamides was affected by the quinoxaline and heterocyclic groups in the polymer chain.They were all soluble in common organic solvents such as dimethylsulfoxide(DMSO),N,N-dimethylformamide(DMF) and N-methylpyrolidone(NMP).The polyamides showed inherent viscosity in the range of 0.25-0.3 dL/g in DMSO at 25℃and good thermal stability with the char yields in the range of 65%-82%at 600℃in nitrogen.  相似文献   

12.
New, thermally stable polyesters with varying chlorine content were prepared by solution and interfacial polycondensation between chlorinated aromatic dichlorides (perchloroterephthaloyl dichloride, 2,5-dichloroterephthaloyl dichloride, and perchloro-4,4′-dichloroformyl biphenyl with different aliphatic and aromatic diols). The polymers were characterized by infrared spectroscopy, elemental analysis, differential scanning calorimetry, and thermogravimetric analysis. Their solubilities and molecular weights were also determined. The influence of chlorine content on the thermal properties of the polymers is discussed.  相似文献   

13.
A new diamine, 2,2-bis[4-(4-aminophenoxy)phenyl]norbornane (BAPN), containing both ether and norbornane cardo groups, was synthesized in three steps started from norcamphor. A series of cardo polyamides were obtained by the direct polycondensation of BAPN and various aromatic dicarboxylic acids in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. Polyamides had inherent viscosities in the range of 0.82–1.58 dL g−1, and were readily soluble in polar aprotic solvents such as NMP, N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide and dimethyl sulfoxide. These polymers were cast in DMAc solution into transparent, flexible, and tough films that were further characterized by X-ray and mechanical analysis. All the polymers were amorphous, and the polyamide films had a tensile strength range of 71–89 MPa, an elongation at break range of 5–9%, and a tensile modulus range of 2.0–2.3 GPa. Polyamides showed glass transition temperatures in the range of 256–296°C as measured by DSC and thermogravimetric analysis indicated no weight loss below 450°C in nitrogen and air atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2791–2794, 1999  相似文献   

14.
New phthalide-containing bisphenols, phenolphthalein-N-(3-methylanilide) (3-PMA), and phenolphthalein-N-(4-methylanilide) (4-PMA), were synthesized from phenolphthalein and m- and p-toluidines. These bisphenols were polycondensed with terephthaloyl chloride (TPC) using an interfacial or solution polymerization technique to yield new polyesters. Copolymers were also obtained by utilizing different molar proportion of phenolphthalein (PPH) and 3-PMA or 4-PMA with TPC. The polymers prepared by solution polymerization were obtained in 93–99% yields and showed reduced viscosities in the range 0.37–0.83 dL/g. They were readily soluble in chlorinated hydrocarbons and aprotic polar solvents. The polyesters showed glass transition temperatures in the range 261–300°C as measured by DSC. Thermogravimetric analysis of the polyesters indicated no weight loss below 408°C under N2 atmosphere. Structure–property correlations among these cardo polyesters have been discussed. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3227–3234, 1997  相似文献   

15.
The synthesis of three new stereoregular AB-type polyamides based on D -ribono-1,4-lactone, L -arabinose, and D -xylose has been carried out by the active ester polycondensation method. These polyamides were characterized by elemental analysis, IR and NMR spectroscopies, and powder X-ray diffraction. They displayed optical activity and had a pronounced affinity to water, although they were not soluble in this solvent. The polyamide obtained from D -ribono-1,4-lactone was highly crystalline and yielded films with spherulitic texture. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3645–3653, 1997  相似文献   

16.
Hyperbranched aliphatic polyesters of 2,2′-bis-(hydroxymethyl) propanoic acid and hyperbranched aliphatic polyamides obtained from new carboxy- and amino-functionalized caprolactams were studied by NMR spectroscopy and MALDI-TOF mass spectrometry. Ring-chain equilibria taking place through intramolecular hydroxy-ester, carboxy-amide or amine-amide interchanges and leading to the formation of cyclic branches or end-groups were found to exert a predominant influence on the molar mass of these hyperbranched polymers. A number of intra- or intermolecular side reactions, such as the formation of ethers in polyesters and the formation of anhydrides, imides, amidines and secondary amines in polyamides were also detected and resulted in polymer crosslinking on prolonged heating. The existence of such ring-chain equilibria and side-reactions make the control of hyperbranched polymer structure much more difficult than generally accepted.  相似文献   

17.
Polyesters were synthesized from the dichlorides of 2,5-dimethoxyterephthalic and 2,5-dimethoxy-1,4-benzenediacetic with dialcohols. The polymers were characterized by elemental analysis and infrared (IR) spectroscopy. Their intrinsic viscosity, glass transition temperature, and thermal decomposition were determined.  相似文献   

18.
Two diamines were synthesized as new aromatic monomers. A series of novel aromatic polyamides (aramids) were also synthesized by direct and indirect polycondensation of these diamines with various aromatic dicarboxylic acids. These aramids have inherent viscosities of 0.43-0.84 dl/g and were obtained in quantitative yield.  相似文献   

19.
New aliphatic-aromatic and fully aromatic phosphonate polyamides were prepared by polycondensation reaction of our synthesized aromatic diamine: tetraethyl[(2,5-diamino-3,6-dimethylbenzene-1,4-diyl)dimethanediyl]bis(phosphonate) with the specific di-acylchloride (adipoyl chloride, isophthaloyl chloride and terephthaloyl chloride). The chemical structure of all samples were characterized by (1H and 31P) NMR, MALDI-TOF MS, FT-IR tools, whereas their thermal properties were determined by DSC and TGA techniques. The phosponate polyadipamide (referred as PAP) is a semi-crystalline sample with a melting temperature at about 261 °C and glass transition (Tg) of 71 °C. All polymers show two thermal degradation steps in the temperature range 270-550 °C. Each polymer, independently its structure, shows the first maximum rate of thermal decomposition temperature (PDT) around 300-310 °C, which may be due to thermal degradation of phoshonate groups. MALDI-TOF spectra, beside the linear oligomers terminated with the specific groups expected in accord to the synthesis procedure, reveals the presence of cyclic oligomers in the polyadipamide and polyisophthalamide samples.  相似文献   

20.
Polyurethane (PU) coatings are widely used for variety of high‐performance applications in today's coating technology. The emerging hyperbranched polymers having three‐dimensional morphology have opened a new avenue to tailor the architecture of PU coatings. The methodology followed here is based on preparation of PU coatings from hyperbranched polyester. Initially, different hyperbranched polyester polyols (HPs) were synthesized by varying the hydroxyl‐terminated precursors that is, pentaerythritol, trimethylol propane or glycerol and keeping the diacid that is, adipic acid quantity constant at various mole ratios of 1:0.6, 1:0.8, 1:0.9, and 1:1, respectively. The obtained HPs were characterized by nuclear magnetic resonance (NMR) spectroscopy, matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF)‐mass spectrometry, and Fourier transform‐infrared (FTIR) spectroscopy. The degree of branching and the quantity of different structural units present in the various HPs were calculated by integrating the quaternary carbon and carbonyl zone in 13C NMR spectroscopy. The extent of condensation in different HPs was also calculated from 1H NMR spectra. Later on, NCO‐terminated PU prepolymers (NCO‐PU) were synthesized by reacting HPs with isophorone diisocyanate (IPDI) at NCO/OH ratio of 1.6:1. In the third step, the excess NCO content in the NCO‐capped PU prepolymers were reacted with atmospheric moisture and hyperbranched polyurethane (HPU) coatings were formed. The coating films were analyzed by FTIR and dynamic mechanical thermal analysis instruments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2673–2688, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号