首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Preparation of R4?nPb[Mn(CO)4P(C6H5)3]n Compounds (R?CH3, C6H5; n = 1, 2) As the first examples of organolead manganese carbonyls substituted in the manganese carbonyl ligand compounds of the type R4?nPb[Mn(CO)4P(C6H5)3]n (R?CH3, C6H5; n = 1, 2) have been prepared by the alkali salt method from R4?nPbCln and NaMn(CO)4P(C6H5)3. (C6H5)2Sn[Mn(CO)4P(C6H5)3]2 has been gained by the same method and also by thermal ligand exchange. According the IR data the ligand P(C6H5)3 is trans to the tetrahedrally surrounded lead. In solution to compounds are monomeric.  相似文献   

2.
Preparation of Acetatolead(1V) and Acetatotin(1V) Manganese Pentacarbonyls by Acidolysis of (C6H5)4?n M[Mn(CO)5]n (M ? Sn, Pb; n = 1, 2) with Acetic Acid By acidolysis of (C6H5)4?nM[Mn(CO)5]n (M ? Sn, Pb; n = 1, 2) with acetic acid no M? Mn bonds are broken, but M? C bonds. In this reaction (CH3COO)2M[Mn(CO)5]2 is formed from (C6H5)2M[Mn(CO)5]2, and (CH3COO)3SnMn(CO)5 and (CH3COO)2C6H5PbMn(CO)5 from (C6H5)3MMn-(CO)5. (CH3COO)2C6H5SnMn(CO)5 is prepared from Cl2C6H5SnMn(CO)5 and AgCH3COO. According to IR spectroscopic data the acetato ligands of the diacetato complexes are bidentate, while in (CH3COO)3SnMn(CO)5 bi- and monodentate carboxylate groups are present. For the central atoms Sn and Pb octahedral coordination is proposed.  相似文献   

3.
ortho-Substituted aryliridium(I) complexes of the type [Ir(RnC6H5-n)(CO)L2] (RnC6H5-n = 2-EtC6H4; 2,6-Et2C6H3; L = PPh3 PMePh2) have been prepared from [IrCl(CO)L2] and the corresponding aryllithiums. With the exception of trans-[Ir(2-EtC6H4)(CO)(PPh3)2] these compounds show cis, trans isomerism. After separation, the isomers have been studied by NMR (1H, 31P), IR, and UV-VIS spectroscopy. ab]Durch Umsetzung von [IrCl(CO)L2] (L = PPh3, PMePh2) mit den entsprechenden Lithiumarylen wurden ortho-substituierte Aryliridium(I)-Komplexe des Typs [Ir(Rn C6H5-n)(CO)L2] (RnC6H5?n = 2-EtC6H4; 2,6-Et2C6H3; 2-Et-6-MeC6H3) dargestellt. Mit Ausnahme von trans-[Ir(2-EtC6H4)(CO)(PPh3)2] zeigen diese Verbindungen die Erscheinung der cis,trans-Isomerie. Die Isomere wurden getrennt und mit Hilfe NMR- (1H, 31P), IR- und UV/VIS-spektroskopischer Methoden untersucht.  相似文献   

4.
Apparently competing cleavage and rearrangement reactions in a series of molecular ions have been studied by ionization and appearance potential methods, and by determination of the electron energy dependence of both normal and metastable daughter ion peak intensities. The processes investigated were (i) [M ? CH3] vs. [M ? CH2O] in anisole; (ii) [M ? OC6H5] vs. [M ? CO] in phenyl ether; (iii) [M ? NO2] vs. [M ? NO] in nitrobenzene; (iv) [M ? C3H7] vs. [M ? C2H4] in butyrophenone: (v) [M ? C3H7] vs. [M ? C3H6] in n-butylbenzene; (vi) [M ? CH2OH] vs. [M ? CH2O] in 2-phenylethanol; (vii) [M ? CH3CO2] vs. [M ? CH2CO] in benzyl acetate; and (viii) [M ? C4H9O] vs. [M ? C4H7] in n-butylbenzoate. The results are interpreted in terms of k vs. E curves with very different frequency factors for the two reaction types. Appearance potentials of metastable ions for the rearrangement reactions have also been measured.  相似文献   

5.
Oxidative cleavage of the FeFe bond in [C5H5Fe(CO)2]2 in the presence of alkylide-bridged diphosphanes LL (LL = (C6H5)2P(CH2)n(P(C6H5)2; n = 1–3), (C6H5)2PCH2As(C6H5)2 and dichalcogenodiphosphoranes (X)LL(X) ((X)LL(X) = (C6H5)2P(X)(CH2)n(X)P(C6H5)2; X  O, S, Se; n = 1–3) yields the complexes [C5H5Fe(CO)2L′]BF4 (L′ = LL, (X)LL(X); X  S, Se) in high yield. the complexes react with Ni(CO)4 under photochemical conditions to form [C5H5Fe(CO)2(μ-L′)Ni(CO)3]BF4 in quantitative yield, and lose a CO group under irradiation (λmax > 300 nm) to form the chelate compounds [C5H5Fe(CO)L′]BF4, which are isolable for L′  LL (P,As ligand) and (X)LL(X) (X = S, Se). Some substitution reactions with phosphanes are described.  相似文献   

6.
Direct Synthesis of Orthometallated Ketones of the Type RCO(o-C6H4)Mn(CO)4?nLn (R = Alkyl and Aryl Groups, n = 0, 1, 2, L = Ligand) The starting materials of the type RMn(CO)5?nLn und (C6H5)2 Hg react to the products of the type RCO(o-C6H4)Mn(CO)4?nLn[n = 0, R = Ch3, C2H5, C3H7, C6H5,CH2; R = C6H5, n = 1, L = E(C6H5)3, E = P, As, Sb; R = C6H5, n = 2, L = P(OR′)3, R′ = C6H5, CH3, C2H5, C3H7]. Steps of their complex reaction pathway are proposed. These orthometallated substances have been characterized by means of 1H-n.m.r., i.r. and u.v. spectroscopic measurements. The determination of the molecular structure of the two compounds RCO(o-C6H4)Mn(CO)3L [R = C2H5, L = CO; R = C6H5, L = As(C6H5)3] show that both contain a planar heterocyclic five-membered ring of the type .  相似文献   

7.
Reactions of reactive cyclopentadienyliron complexes C5H5Fe(CO)2I, [C5H5Fe(CO)2THF]BF4, [C5H5Fe(CO)((CH3)2S)2]BF4 and [C5H5Fe(p-(CH3)2C6H4)]PF6 with P(OR)3 as ligands (R = CH3, C2H5, i-C3H7 and C6H5) lead to the formation of the complex compounds C5H5Fe(CO)2?n(P(OR)3)nI and [C5H5Fe(CO)3?n(P(OR)3)n]X (n = 1, 2 and n = 1–3, X = BF4, PF6). Spectroscopic investigations (IR, 1H, 13C and 31P NMR) indicate an increase of electron density on the central metal with increasing substitution of CO groups by P(OR)3 ligands. The stability of the compounds increase in the same way.  相似文献   

8.
The chiral cations, [CpFe(CO)(EMe2)L]+, are obtained both by reaction of [CpFe(CO)(EMe2)2]+ with the ligands (L) by heating, and by irradiation of the cations [C5H5Fe(CO)2EMe2]+ in the presence of L (E = S, Se, Te; L = PR3, AsR3, SbR3). The inversion about the chalcogen atom is investigated by DNMR spectrocopy. Compounds of the type [C5H5Fe(TeMe2)L2]+] are formed by irradiation of [C5H5Fe(CO)2(TeMe2)]+ and the ligands (L2 = 2 PR3, R = CH3, OCH3, OC6H5; L2 = R2P(CH2)nPR2, R = C6H5, n = 1,2,3). 77Se and 125Te NMR data vary according to the donor properties of the ligand L in the complexes.  相似文献   

9.
Nickelocen reagiert mit Dialkylphosphiten HP(O)(OR)2 zu den Komplexen C5H5Ni[{P(OR)2O}2H] ( 1 :R ? Me; 2 :R ? Et), in denen ein sechsgliedriger NiP2O2H-Ring mit einer vermutlich symmetrischen OHO-Wasserstoffbrücke vorliegt. Die Umsetzung von 1 mit HBF4 führt zu C5H5Ni[{P(OMe)2O}2BF2] ( 3 ). Mit NH3 und Thalliumacetylacetonat entstehen aus 1 bzw. 2 die Komplexe [C5H5Ni{P(OR)2O}2]NH4 ( 4, 5 ) und [C5H5Ni{P(OR)2O}2]Tl ( 6, 7 ). Die entsprechenden Alkalimetallverbindungen [C5H5Ni{P(OMe)2O}2]M ( 8 :M ? Li; 9 :M ? Na) sind ausgehend von C5H5Ni[P(OMe)3][P(O)(OMe)2] und LiI bzw. NaI zugänglich. C5H5Ni[P(OMe)3][P(O)(OMe)2] reagiert mit HgI2 zu C5H5Ni[P(OMe)3]I und [IHg{P(O)(OMe)2}]2. Metallabisphosphonates as Chelating Ligands. I. Synthesis of Mononuclear Nickelbisphosphonates Containing a OHO-Hydrogen Bridge and of Corresponding Alkali Metal, Ammonium, and Thallium Compounds Nickelocene reacts with dialkylphosphites HP(O)(OR)2 to form the complexes C5H5Ni[{P(OR)2O}2H] ( 1 :R ? Me; 2 :Et) which contain a six-membered NiP2O2H ring with a presumably symmetrically OHO-hydrogen bond. The reaction of 1 with HBF4 leads to C5H5Ni?[{P(OMe)2O}2BF2] ( 3 ). The complexes 1 and 2 react with NH3 and thallium acetylacetonate to give [C5H5Ni{P(OR)2O}2]NH4 ( 4, 5 ) and [C5H5Ni{P(OR)2O}2]Tl ( 6, 7 ), respectively. The corresponding alkali metal compounds [C5H5Ni{P(OMe)2O}2]M ( 8 :M ? Li; 9 :M ? Na) are formed in the reaction of C5H5Ni[P(OMe)3][P(O)(OMe)2] with LiI or NaI. With HgI2, C5H5Ni[P(OMe)3][P(O)(OMe)2] reacts to yield C5H5Ni[P(OMe)3]I and [IHg{P(O)(OMe)2}]2.  相似文献   

10.
Heteronuclear Metal Atom Clusters of the Types X4?n[SnM(CO)4P(C6H5)3]n and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 by Reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (X = Halogene; M = Mn, Re; n = 2, 3) The compounds of the both types X4?n[SnM(CO)4P(C6H5)3]n (n = 3; M = Mn; X = F, Cl, Br, I. n = 2: M = Mn, Re; X = Cl, Br, I) and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 (M = Mn; X = Cl, I. M = Re; X = Cl, Br, I) are prepared by reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (M = Mn, Re). Their IR frequencies are assigned. In Re2(CO)8[μ-Sn(Cl)Re(CO)4P(C6H5)3]2 the central molecule fragment contains a planar Re2Sn2 rhombus with a transannular Re? Re bond of 316.0(2) pm. Each of the SnIV atoms is connected with the terminal ligands Cl and Re(CO)4P(C6H5)3. These ligands are in transposition with respect to the Re2Sn2 ring. The mean values for the remaining bond distances (pm) are: Sn? Re = 274.0(3); Sn? Cl = 243(1), Re? C = 176(5), Re? P = 242.4(9), C? O = 123(5). The factors with an influence on the geometrical shape of such M2Sn2 rings (M = transition metal) are discussed.  相似文献   

11.
The thermal decomposition behaviours of oxovanadium(IV)hydroxamate complexes of composition [VO(Q)2?n(HL1,2)n]: [VO(C9H6ON)(C6H4(OH)(CO)NHO)] (I), [VO(C6H4(OH)(CO)NHO)2] (II), [VO(C9H6ON)(C6H4(OH)(5-Cl)(CO)NHO)] (III), and [VO(C6H4(OH)(5-Cl)(CO)NHO)2] (IV) (where Q?=?C9H6NO? 8-hydroxyquinolinate ion; HL1?=?[C6H4(OH)CONHO]? salicylhydroxamate ion; HL2?=?[C6H3(OH)(5-Cl)CONHO]? 5-chlorosalicylhydroxamate ion; n?=?1 and 2), which are synthesised by the reactions of [VO(Q)2] with predetermined molar ratios of potassium salicylhydroxamate and potassium 5-chlorosalicylhydroxamate in THF?+?MeOH solvent medium, have been studied by TG and DTA techniques. Thermograms indicate that complexes (I) and (III) undergo single-step decomposition, while complexes (II) and (IV) decompose in two steps to yield VO(HL1,2) as the likely intermediate and VO2 as the ultimate product of decomposition. The formation of VO2 has been authenticated by IR and XRD studies. From the initial decomposition temperatures, the order of thermal stabilities for the complexes has been inferred as III?>?I > II?>?IV.  相似文献   

12.
Theoretical studies show that pendant dimethylamino groups can play a significant role in the chemistry of unsaturated binuclear dimethylaminoborole iron carbonyls. For [C4H4BN(CH3)2]2Fe2(CO)5, the lowest energy structures have single CO bridges and Fe?CFe single bonds of lengths ~2.8 ?. The lowest energy [C4H4BN(CH3)2]2Fe2(CO) n (n?=?4, 3) structures have two bridging CO groups with Fe=Fe double bonds of lengths ~2.5 ? for n?=?4 and three bridging CO groups with Fe??Fe triple bonds of lengths ~2.2 ? for n?=?3. These structures are similar to structures previously found for the corresponding methylborole derivatives (C4H4BCH3)Fe2(CO) n . However, slightly higher energy [C4H4BN(CH3)2]2Fe2(CO) n (n?=?4, 3) structures are found in which dimethylaminoborole is a six-electron donor bridging ligand using electron pairs from the nitrogen atom as well as from the two C=C double bonds. For the more highly unsaturated [C4H4BN(CH3)2]2Fe2(CO) n (n?=?2, 1), low energy singlet (n?=?2) and triplet (n?=?1) perpendicular structures are also found with similar bridging six-electron donor dimethylaminoborole ligands. In addition, highly unsaturated [C4H4BN(CH3)2]2Fe2(CO) n (n?=?3, 2, 1) structures are found with agostic hydrogen atoms bridging an iron?Ccarbon bond.  相似文献   

13.
Reactions of the Cycloheptatrienyl Complexes [η7-C7H7W(CO)3]BF4 and η7-C7H7Mo(CO)2Br with Neutral Ligands and the Electrochemical Reduction of the Wolfram Complex Compounds of the type [η7-C7H7M(CO)2L][BF4] (L = P(C6H5)3, As(C6H5)3, Sb(C6H5)3 for M = W and L = N2H4 for M = Mo) were synthesized and characterisized. The iodide η7-C7H7W(CO)2I reacts with the diphosphine ((C6H5)2PCH2)2 to give the trihapto complex η3-C7H7 W(CO)2I((C6H5)2PCH2)2. In the case of η7-C7H7Mo(CO)2 Br reaction with hydrazine leads to the substitution product [η7-C7H7 Mo(CO)2N2H4], which can be stabilized by large anions. The binuclear complex [C7H7W(CO)3]2 has been synthesized electrochemically.  相似文献   

14.
The mass spectra of the following compounds have been investigated: (i) The organotin derivatives (CH3)3SnMo(CO)3C5H5 and (CH3)3SnNCW(CO)5; (ii) The mercury derivatives Hg[Mn(CO)5]2, Hg[Co(CO)4]2, Hg[Mo(CO)3C5H5]2 and ClHgMo(CO)3C5H5; (iii) The polynuclear cyclopentadienyl metal derivatives [C5H5Ru(CO)2]2, [C5H5Cr(CO)3]2, [C5H5Cr(NO)2]2 and [C5H5Fe-CO]4; (iv) The trinuclear cobalt carbonyl derivatives YCCo3(CO)9 (Y = Cl and CH3); (v) The binuclear triene-iron carbonyl derivatives C4H4Fe2(CO)6 and C8H10Fe2(CO)6. The mass spectra of the trimethyltin derivatives exhibited stepwise loss of methyl groups as well as of carbonyl groups. The mass spectra of the mercury derivatives exhibited the facile loss of mercury. The mass spectrum of [C5H5Cr(CO)3]2 indicated a very weak chromium-chromium bond since it exhibited no ion containing two chromium atoms. The mass spectrum of the nitrosyl derivative [C5H5Cr(NO)2]2 exhibited the stepwise loss of its four nitrosyl groups. The mass spectrum of [C5H5FeCO]4 was rather complex and exhibited a variety of unusual processes including eliminations of neutral Fe and C5H5Fe fragments. Unusual ions observed in the mass spectrum of CH3CCo3(CO)9 include the bare polymetallic ions [Con]+ (n = 3 and 2). Many examples of the elimination of neutral CO, C2H2 and H2 fragments were noted in this work.  相似文献   

15.
The S‐functionalized aminosilane Me2Si(NH‐C6H4‐2‐SPh)2 (H2L) ( 1 ) was prepared from dichlorodimethylsilane and lithiated 2‐(phenylthio)aniline. Treatment of compound 1 with two equivalents of n‐butyllithium led to the dilithium derivative Li2L, which was used in subsequent reactions with MCl (M = Tl, Cu, Ag) to prepare the complexes [Tl2L] ( 2 ), [Cu2Tl2L2] · 2THF ( 3a ), [Cu2Tl2L2(THF)2] ( 3b ), and [Ag4L2(THT)2] ( 4 ) (THT = tetrahydrothiophene). Compound 2 consists of two thallium atoms, which are connected by a L2– ligand to give a puckered Tl2N2 ring with Tl–N distances of 255(1)–268(1) pm. Compounds 3a and 3b are heterobimetallic complexes, which are based on [Cu2L2]2– cores featuring a Cu2N4Si2 ring with linearly coordinated copper atoms [Cu–N: 190.7(3)–192.5(3) pm] and two peripherally attached Tl atoms [Tl–N: 272.7(3)–281.9(3) pm]. The molecular structure of the tetranuclear silver(I) complex 4 is closely related to the structure of compounds 3a and 3b by replacement of the Cu and Tl atoms with Ag atoms. The Ag–N distances are 217.5(3)–245.7(3) pm.  相似文献   

16.
Bis(cyclopentadienyl)methane-bridged Dinuclear Complexes, V[1]. – Heteronuclear Co/Rh-, Co/Ir-, Rh/Ir-, and Ti/Ir Complexes with the Bis(cyclopentadienyl)methane Dianion as Bridging Ligand* The lithium and sodium salts of the [C5H5CH2C5H4]- anion, 1 and 2 , react with [Co(CO)4I], [Rh(CO)2Cl]2, and [Ir(CO)3Cl]n to give predominantly the mononuclear complexes [(C5H5-CH2C5H4)M(CO)2] ( 3, 5, 7 ) together with small amounts of the dinuclear compounds [CH2(C5H4)2][M(CO)2]2 ( 4, 6, 8 ). The 1H- and 13C-NMR spectra of 3, 5 , and 7 prove that the CH2C5H5 substituent is linked to the π-bonded ring in two isomeric forms. Metalation of 5 and 7 with nBuLi affords the lithiated derivatives 9 and 10 from which on reaction with [Co(CO)4I], [Rh(CO)2Cl]2, and [C5H5TiCl3] the heteronuclear complexes [CH2(C5H4)2][M(CO)2][M′(CO)2] ( 11–13 ) and [CH2(C5H4)2]-[Ir(CO)2][C5H5TiCl2] ( 17 ) are obtained. Photolysis of 11 and 12 leads almost quantitatively to the formation of the CO-bridged compounds [CH2(C5H4)2][M(CO)(μ-CO)M′(CO)] ( 14, 15 ). According to an X-ray crystal structure analysis the Co/Rh complex 14 is isostructural to [CH2(C5H4)2][Rh2(CO)2(μ-CO)] ( 16 ).  相似文献   

17.
Whereas Co2(CO)8 and RNC (R= Me, Et, and Cy) react to give mixtures of [(RNC)5Co] [Co(CO)4] and the covalent, carbonyl-bridged [(RNC)mCo2(CO)8?m] derivatives (m = 1–3), [(π-dienyl)Fe(CO)2]2 give only [(π-dienyl)2Fe2(CO)4?n(CNR)n] complexes (dienyl = C5H5, MeC5H4 and C9H7; n = 1–2) that exist in solution as mixtures of cis- and trans-CO- and RNC-bridged tautomers with the μ-RNC species decreasing in importance as the bulk of R increases.  相似文献   

18.
The use of ferricenium cations [(C5H5)2FE]X (X = BF4, PF6, SbF6) as one-electron oxidizing agents for organometallic complexes is demonstrated. Sandwich compounds M(C5H5)2 (M = Cr, Co, Ni) and Cr(C6H6)2 are oxidized in nearly quantitative yield to the corresponding cations [M(C5H5)2]BF4 and [(C6H6)2Cr]BF4. The metalmetal bond in the dinuclear organometallic complexes [DienylM(CO)n]2 (M = Mo (n = 3), Fe (n = 2), Ni (n = 1)) and Co2(CO)8 is fissioned by (C5H5)2Fe+ in the presence of neutral ligands L to form the corresponding cationic compounds [DienylM(CO)nLm]X (M = Mo (n = 2), Fe (n = 2), Ni (n = 0)) and [Co(CO)3L2BF4 (L = VB and VIB donor ligands) in high yields.The practical applications of ferricenium cations are discussed in comparison with other methods for the preparation of cationic organometallic complexes.  相似文献   

19.
The photoinduced synthesis and spectroscopic properties of the new mixed metal compound [Mn3Re(CO)12(SC6H5)4] by UV irradiation of a mixture of Mn2(CO)10, Re2(CO)10 with S2(C6H5)2 is described. No mixed sulphur/selenium compounds [M4(CO)12SnSe4?n(C6H5)4] (M = Mn or Re, n = 1–3) could be obtained by analogous photoreactions.  相似文献   

20.
The two title compounds, [Mo2Ir2(C6H7)2(CO)10] and [Mo2Ir2(C9H13)2(CO)10]·0.5CH2Cl2, respectively, or collectively [Mo2Ir2(μ‐CO)3(CO)75‐C5H5?nMen)2] (n = 1 or 4), have a pseudo‐tetrahedral Mo2Ir2 core geometry, an η5‐­C5H5?nMen group ligating each Mo atom, bridging carbonyls spanning the edges of an MoIr2 face and seven terminally bound carbonyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号