首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Nucleosides and Nucleotides. Part 10. Synthesis of Thymidylyl-(3′-5′)-thymidylyl-(3′-5′)-1-(2′-deoxy-β-D - ribofuranosyl)-2(1 H)-pyridone The synthesis of 5′-O-monomethoxytritylthymidylyl-(3′-5′)-thymidylyl-(3′-5′)-1-(2′-deoxy-β-D -ribofuranosyl)-2(1H)-pyridone ((MeOTr)TdpTdp∏d, 5 ) and of thymidylyl-(3′-5′)-thymidylyl-(3′-5′)-1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridone (TdpTdp∏d, 11 ) by condensing (MeOTr) TdpTd ( 3 ) and p∏d(Ac) ( 4 ) in the presence of DCC in abs. pyridine is described. Condensation of (MeOTr) TdpTdp ( 6 ) with Πd(Ac) ( 7 ) did not yield the desired product 5 because compound 6 formed the 3′-pyrophosphate. The removal of the acetyl- and p-methoxytrityl protecting group was effected by treatment with conc. ammonia solution at room temperature, and acetic acid/pyridine 7 : 3 at 100°, respectively. Enzymatic degradation of the trinucleoside diphosphate 11 with phosphodiesterase I and II yielded Td, pTd and p∏d, Tdp and Πd, respectively, in correct ratios.  相似文献   

2.
The convergent syntheses of 3-deazapurine 2′-deoxy-β-D -ribonucleosides and 2′,3′-dideoxy-D -ribonucleosides, including 3-deaza-2′-deoxyadenosine ( 1a ) and 3-deaza-2′,3′-dideoxyadenosine ( 1b ) is described. The 4-chloro-lH-imidazo[4,5-c]pyridinyl anion derived from 5 was reacted with either 2′-deoxyhalogenose 6 or 2′,3′-dideoxyhalogenose 10 yielding two regioisomeric (N1 and N3) glycosylation products. They were deprotected and converted into 4-substituted imidazo[4,5-c]pyridine 2′-deoxy-β-D -ribonucleosides and 2′,3′-dideoxy-D -ribonucleosides. Compounds 1a and 1b proved to be more stable against proton-catalyzed N-glycosylic bond hydrolysis than the parent purine nucleosides and were not deaminated by adenosine deaminase.  相似文献   

3.
4.
The stereospecific cis-hydroxylation of 1-(2,3-dideoxy-β-D -glyceropent-2-enofuranosyl)thymine (1) into 1-β-D -ribofuranosylthymine (2) by osmium tetroxide is described. Treatment of 2′,3′-O, O-isopropylidene-5-methyl-2,5′-anhydrouridine (8) with hydrogen sulfide or methanolic ammonia afforded 5′-deoxy-2′,3′-O, O-isopropylidene-5′-mercapto-5-methyluridine (9) and 2′,3′-O, O-isopropylidene-5-methyl-isocytidine (10) , respectively. The action of ethanolic potassium hydroxide on 5′-deoxy-5′-iodo-2′,3′-O, O-isopropylidene-5-methyluridine (7) gave rise to the corresponding 1-(5-deoxy-β-D -erythropent-4-enofuranosyl)5-methyluracil (13) and 2-O-ethyl-5-methyluridine (14) . The hydrogenation of 2 and its 2′,3′-O, O-isopropylidene derivative 4 over 5% Rh/Al2O3 as catalyst generated diastereoisomers of the corresponding 5-methyl-5,6-dihydrouridine ( 17 and 18 ).  相似文献   

5.
Difuro[3,2-c:3′,2′-e]pyridine 1 , a new tricyclic heteroaromatic, has been prepared for the first time. Bromination of 1 with molecular bromine gave 3-bromo 7 , 8-bromo 7′ and 3,8-dibromo derivative 8 ; nitration with fuming nitric acid yielded 2-nitro compound 9 , while nitration with a mixture of fuming nitric acid and sulfuric acid gave 2,7-dinitro derivative 10 ; formylation with n-butyllithium and dimethylformamide gave 2-formyl 11 , 7-formyl 11′ , and 2,7-diformyl compound 12. The N-oxide 14 of 1 afforded 4-cyano compound 15 by cyanation with trimethylsilyl cyanide, 4-chloro compound 16 by chlorination with phosphorus oxychloride, and 4-acetoxyl compound 17 by acetoxylation with acetic anhydride.  相似文献   

6.
An efficient synthesis of the unknown 2′-deoxy-D-threo-tubercidin ( 1b ) and 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) as well as of the related nucleosides 9a, b and 10b is described. Reaction of 4-chloro-7-(2-deoxy-β-D-erythro-pentofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine ( 5 ) with (tert-butyl)diphenylsilyl chloride yielded 6 which gave the 3′-keto nucleoside 7 upon oxidation at C(3′). Stereoselective NaBH4 reduction (→ 8 ) followed by deprotection with Bu4NF(→ 9a )and nucleophilic displacement at C(6) afforded 1b as well as 7-deaza-2′-deoxy-D-threo-inosine ( 9b ). Mesylation of 4-chloro-7-{2-deoxy-5-O-[(tert-butyl)diphenylsilyl]-β-D-threo-pentofuranosyl}-7H-pyrrolo[2,3-d]-pyrimidine ( 8 ), treatment with Bu4NF (→ 12a ) and 4-halogene displacement gave 2′, 3′-didehydro-2′, 3′-dideoxy-tubercidin ( 3 ) as well as 2′, 3′-didehydro-2′, 3′-dideoxy-7-deazainosne ( 12c ). On the other hand, 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) resulted from 8 by treatment with diethylamino sulfurtrifluoride (→ 10a ), subsequent 5′-de-protection with Bu4NF (→ 10b ), and Cl/NH2 displacement. 1H-NOE difference spectroscopy in combination with force-field calculations on the sugar-modified tubercidin derivatives 1b , 2 , and 3 revealed a transition of the sugar puckering from the 3′T2′ conformation for 1b via a planar furanose ring for 3 to the usual 2′T3′ conformation for 2.  相似文献   

7.
Reaction of 5-dimethylaminomethylpyrrolo[2,3-b]pyridine methiodide or 5-dimethylaminomethylpyrrolo[2,3-d]pyrimidin-4-one methiodide with 5′-deoxy-5′-S-thioacetyl-N6-formyl-2′,3′-O-isopropylideneadenosine in ethanolic sodium hydroxide solution, followed by deprotection of the resulting thioether in 80% formic acid, afforded 5′-deoxy-5′-(5-pyrrolo[2,3-b]pyridinemethylthio)adenosine or 5′-deoxy-5′-[5-(pyrrolo[2,3-d]pyrimidin-4-one)methylthio]adenosine, respectively. Similarly, the metiodide salt of the iso-gramine analog, 2-amino-6-dimethylaminomethylpyrrolo[2,3-d]pyrimidin-4-one afforded 5′-deoxy-5′-[6-(2-aminopyrrolo[2,3-d]pyrimidin-4-one)methylthio]adenosine.  相似文献   

8.
A series of new 2′–5′ oligonucleotides carrying the 9-(3′-azido-3′deoxy-β-D-xylofuranosyl)adenine moiety as a building block has been synthesized via the phosphotriester method. The use of the 2-(4-nitrophenyl)ethyl (npe) and 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) blocking groups for phosphate, amino, and hydroxy protection guaranteed straightforward syntheses in high yields and easy deblocking lo form the 2′–5′ trimers 21 , 22 , and 25 and the tetramer 23 . Catalytic reduction of the azido groups in [9-(3′-azido-3′-deoxy-β-D-xylofuranosyl)adenine]2′-yl-[2′-(Op-ammonio)→ 5′]-[9-(3′-azido-3′-deoxy-β-D-xylofuranosyl)adenin]-2′-yl-[2′-(Op-ammonio)→ 5′]-9-(3′-azido-3′-deoxy-β-D-xylofuranosyl)adenine ( 21 ) led to the corresponding 9-(3′-amino-3′-deoxy-β-D-xylofuranosyl)-adenine 2′–5′ trimer 26 in which the two internucleotidic linkages are formally neutralized by intramolecular betaine formation.  相似文献   

9.
Both 5-acetoxy-6-(acetoxymethyl)-1-methyluracil 1 and its parent diol 11 are converted into the spiro[pyrimidine-4,2′-pyrano[3,2-d]pyrimidine] 6 when treated, respectively, with hot methanolic pyridine and with one equivalent of acetic anhydride. The formation of 6 can be explained in terms of the generation and dimerization of the reactive 5-oxo-6-methylene pyrimidine 2 . The structure of 6 was determined by 13C nmr spectroscopy and by chemical transformations that lead to the pyrimidinylethylhydantoin 9 and the 6,6′-[1,2-ethanediyl]bispyrimidine 10 . The more complex 5-hydroxy-6-(hydroxyalkyl)uracils represented by the 6,5′-cyclourid-ines 17 undergo an analogous dimerization when treated with acetic anhydride to give structures 22a and 22b . Dimer 22a was also prepared via the 5-phosphate ester 18 . The stereochemistry of dimers 22a and 22b , which is apparent from their 1H nmr spectra, indicates that two molecules of the enones 21a or 21b dimerize in a highly stereoselective manner.  相似文献   

10.
A kinetic study on hydrolysis of N‐(2′‐hydroxyphenyl)phthalamic acid ( 1 ), N‐(2′‐methoxyphenyl)phthalamic acid ( 2 ), and N‐(2′‐methoxyphenyl)benzamide ( 3 ) under a highly alkaline medium gives second‐order rate constants, kOH, for the reactions of HO? with 1, 2 , and 3 as (4.73 ± 0.36) × 10?8 at 35°C, (2.42 ± 0.28) × 10?6 and (5.94 ± 0.23) × 10?5 M?1 s?1 at 65°C, respectively. Similar values of kOH for 3 , N‐methylbenzanilide, N‐methylbenzamide, and N,N‐dimethylbenzamide despite the difference between pKa values of aniline and ammonia of ~10 pK units are qualitatively explained. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 1–11, 2009  相似文献   

11.
The 1′,2′-unsaturated 2′,3′-secoadenosine and 2′,3′-secouridine analogues were synthesized by the regioselective elimination of the corresponding 2′,3′-ditosylates, 2 and 18 , respectively, under basic conditions. The observed regioselectivity may be explained by the higher acidity and, hence, preferential elimination of the anomeric H–C(1′) in comparison to H? C(4′). The retained (tol-4-yl)sulfonyloxy group at C(3′) of 3 allowed the preparation of the 3′-azido, 3′-chloro, and 3′-hydroxy derivatives 5–7 by nucleophilic substitution. ZnBr2 in dry CH2Cl2 was found to be successful in the removal (85%) of the trityl group without any cleavage of the acid-sensitive, ketene-derived N,O-ketal function. In the uridine series, base-promoted regioselective elimination (→ 19 ), nucleophilic displacement of the tosyl group by azide (→ 20 ), and debenzylation of the protected N(3)-imide function gave 1′,2′-unsaturated 5′-O-trityl-3′-azido-secouridine derivative 21 . The same compound was also obtained by the elimination performed on 2,2′-anhydro-3′-azido-3′-azido-3′-deoxy-5′-O-2′,3′-secouridine ( 22 ) that reacted with KO(t-Bu) under opening of the oxazole ring and double-bond formation at C(1′).  相似文献   

12.
Thioether 4‐[(1′E,3′E)‐4′‐phenylsulfanyl‐1,3′‐butadienyl]pyridine 8 and sulfone 4‐(4′‐phenylsulfonyl‐1′,3′‐butadienyl)pyridine 14 were prepared by reaction of the carbanions derived from allylic thioether or allylic sulfone with isonicotinaldehyde. The reaction with the sulfonyl carbanion occurred at the α position and on heating the alcolate gave the dienic sulfone 14 . The corresponding pyridinium iodide 10 and 15 were prepared by reaction with methyl iodide, respectively, on pyridine derivates 8 and 14 . The dienic pyridinium thioether 10 showed a long wavelength absorption band centered at 420 nm. The reaction of dienic pyridinium sulfone 15 with thiophenol gave the dienic pyridinium thioether 10 by a nucleophilic vinylic substitution. The reaction of sulfone 15 with glutathione was of second order and the rate constant was 8.5 M?1s?1 at 30°C and pH 7, about 500 times smaller than the rate constant observed with (E)‐1‐methyl‐4‐(2‐methylsulfonyl‐1‐ethenyl)pyridinium iodide 1 . The dienic pyridinium thioether 10 was a negative solvatochrome.  相似文献   

13.
To measure the hydrophobic character of the ribose moiety of doridosine on the adenosine receptors, 2′,3′-didehydro-2′,3′-dideoxydoridosine (2) and 2′,3′-dideoxydoridosine (3) were prepared. Initial treatment of doridosine with N,N-dimethylformamide diethylacetal, and subsequently with tert-butyldimethylsilyl chloride gave 5. Compound 5 was then reacted with 1,1′-thiocarbonyldiimidazole and the resulting thionocarbonate 6 was heated with triethyl phosphite at 135°C to afford 7. Treatment of compound 7 with tetrabutylammonium fluoride and methanolic ammonia furnished compound 2 in good yield. Compound 2 was subjected to catalytic hydrogenation affording compound 3 in 85% yield.  相似文献   

14.
Nucleosides and Nucleotides. Part 16. The Behaviour of 1-(2′-Deoxy-β-D -ribofuranosyl)-2(1H)-pyrimidinone-5′-triphosphate, 1-(2′-Deoxy-β-D -ribofuranosyl-2(1H))-pyridinone-5′-triphosphate and 4-Amino-1-(2′-desoxy-β-D -ribofuranosyl)-2(1H)-pyridinone-5′-triphosphate towards DNA Polymerase The behaviour of nucleotide base analogs in the DNA synthesis in vitro was studied. The investigated nucleoside-5′-triphosphates 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyrimidinone-5′-triphosphate (pppMd), 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone-5′-triphosphate (pppIId) and 4-amino-1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone-5′-triphosphate (pppZd) can be considered to be analogs of 2′-deoxy-cytidine-5′-triphosphate. However, their ability to undergo base pairing to the complementary guanine is decreased. When pppMd, pppIId or pppZd are substituted for pppCd in the enzymatic synthesis of DNA by DNA polymerase no incorporation of these analogs is observed. They exhibit only a weak inhibition of the DNA synthesis. The mode of the inhibition is uncompetitive which shows that these nucleotide analogs cannot serve as substrates for the DNA polymerase.  相似文献   

15.
The 5′-amino-5′-deoxy-2′,3′-O-isopropylideneadenosine ( 4 ) was obtained in pure form from 2′,3′-O-isopropylideneadenosine ( 1 ), without isolation of intermediates 2 and 3 . The 2-(4-nitrophenyl)ethoxycarbonyl group was used for protection of the NH2 functions of 4 (→7) . The selective introduction of the palmitoyl (= hexadecanoyl) group into the 5′-N-position of 4 was achieved by its treatment with palmitoyl chloride in MeCN in the presence of Et3N (→ 5 ). The 3′-O-silyl derivatives 11 and 14 were isolated by column chromatography after treatment of the 2′,3′-O-deprotected compounds 8 and 9 , respectively, with (tert-butyl)dimethylsilyl chloride and 1H-imidazole in pyridine. The corresponding phosphoramidites 16 and 17 were synthesized from nucleosides 11 and 14 , respectively, and (cyanoethoxy)bis(diisopropylamino)phosphane in CH2Cl2. The trimeric (2′–5′)-linked adenylates 25 and 26 having the 5′-amino-5′-deoxyadenosine and 5′-deoxy-5′-(palmitoylamino)adenosine residue, respectively, at the 5′-end were prepared by the phosphoramidite method. Similarly, the corresponding 5′-amino derivatives 27 and 28 carrying the 9-[(2-hydroxyethoxy)methyl]adenine residue at the 2′-terminus, were obtained. The newly synthesized compounds were characterized by physical means. The synthesized trimers 25–28 were 3-, 15-, 25-, and 34-fold, respectively, more stable towards phosphodiesterase from Crotalus durissus than the trimer (2′–5′)ApApA.  相似文献   

16.
The synthesis of 4-(methylthio)-1H-imidazo[4,5-c]pyridine 2′-deoxy-β-D -ribonucleosides 2 and 9 and the conversion of the N1-isomer 2 into the 2′,3′-didehydro-2′,3′-dideoxyribonucleoside 3a or (via 7 ) 3-deaza-2′-deoxyadenosine ( 1 ) is described. Phosphonate building blocks of 1 were employed in solid-phase synthesis of self-complementary base-modified oligonucleotides. Their properties were studied with regard to duplex stability and hydrolysis by the restriction enzyme Eco RI.  相似文献   

17.
Coupling of 4,6-dichloro-1H-imidazo[4,5-c]pyridine (2,6-dichloro-3-deaza-9H-purine) ( 1 ) with 1,2-O-di-acetyl-5-O-benzoyl-3-deoxy-β-D -ribofuranose ( 2 ), employing the acid-catalyzed fusion method, is reported (Scheme 1). The condensation reaction was regioselective and gave the three N1-glycosylation products 3 – 5 , whereas no N3-nucleosides were detected. Treatment of 3 – 5 with methanolic ammonia afforded the corresponding deprotected nucleosides 6 – 8 . Compounds 6 and 7 were assigned the structure of the β-D - and α-D -anomeric N1-(3′-deoxyribo)nucleosides, respectively. The third derivative 8 proved to be the α-D -anomer of a 3′-deoxyarabinonucleoside deriving from epimerization at C(2) of the sugar. The 2-chloro- and N6-substituted derivatives 9 , 11 , and 13 of 3′-deoxy-3-deazaadenosine ( 10 ) and of its α-D -anomer 12 can be obtained from these versatile synthons (Schemes 2 and 3).  相似文献   

18.
New 1-deazapurine nucleosides were synthesized by coupling 2,6-dichloro-1-deaza-9H-purine (=5,7-dichloro-3H-imidazo[4,5-b]pyridine) with a 3-deoxyribose derivative by the acid-catalyzed fusion method. The condensation reaction gave an anomeric mixture of the N9-β-D - and N9-α-D -3′-deoxynucleosides, which were treated with methanolic ammonia at room temperature to obtain the deprotected derivatives. Reaction of the β-D -anomer with different amines gave 2-chloro-N6-substituted nucleosides, which were dechlorinated to give the corresponding 3′-deoxy-1-deazaadenosines. Biological studies on adenosine deaminase from calf intestine showed that the new compounds are inhibitors of the enzyme, the 3′-deoxy-1-deazaadenosine being the most potent one with a Ki of 2.6 μM .  相似文献   

19.
The synthesis of 8-azaguanine N9-, N8-, and N7-(2′-deoxyribonucleosides) 1–3 , related to 2′-deoxyguanosine ( 4 ), is described. Glycosylation of the anion of 5-amino-7-methoxy-3H-1,2,3-triazolo[4,5-d]pyrimidine ( 5 ) with 2-deoxy-3,5-di-O-(4-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 6 ) afforded the regioisomeric glycosylation products 7a/7b, 8a/8b , and 9 (Scheme 1) which were detoluoylated to give 10a, 10b, 11a, 11b , and 12a . The anomeric configuration as well as the position of glycosylation were determined by combination of UV, 13C-NMR, and 1H-NMR NOE-difference spectroscopy. The 2-amino-8-aza-2′-deoxyadenosine ( 13 ), obtained from 7a , was deaminated by adenosine deaminase to yield 8-aza-2′-deoxyguanosine ( 1 ), whereas the N7- and N8-regioisomers were no substrates of the enzyme. The N-glycosylic bond of compound 1 (0.1 N HCl) is ca. 10 times more stable than that of 2′-deoxyguanosine ( 4 ).  相似文献   

20.
Three novel compounds, (η6‐p‐cymene)RuCl2(2‐fluoro‐5‐aminopyridine) (compound 1), (η6‐p‐cymene)RuCl2(5‐amino‐2‐chlorpyridine) (compound 2) and (η6‐p‐cymene)RuCl2(2‐bromo‐ 5‐aminopyridine) (compound 3), were synthesized and characterized. The compound 1 and 3 were determined by X‐ray diffraction, showing a distorted piano‐stool type of geometry with similar bond lengths and angles around the ruthenium. Compound 2 exhibited moderate in vitro activity against A549 and MCF‐7 human cancer cells, the other two lower activities. The UV–vis and fluorescent absorption titrations showed that three compounds binded with CT‐DNA in a minor groove. The intrinsic binding constants (Kb) were calculated to be 2.13(±0.03) × 105 M?1, 2.89(±0.03) × 105 M?1 and 2.45(±0.03) × 105 M?1 for compound 1, 2 and 3, respectively, by using UV–vis absorption titrations data. Among the three compound, the highest value of intrinsic binding constant of compound 2 was consistent with its highest cytoxicity against A549 and MCF‐7 human cancer cells in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号