首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Preliminary small-angle neutron scattering (SANS) studies have been made of different ionomers in the dry state and after saturation with water. Scattering from the dry samples arises from differences in the neutron scattering cross sections of the ionic and nonionic units in the polymer. The SANS technique is complementary to previous small-angle x-ray scattering (SAXS) studies since the SANS contrast differences are generally quite different than those for SAXS. A quantitative comparison is made of SANS and SAXS intensities for a dry cesium salt of an ethylene-methacrylic acid (E-MAA) copolymer. For water-saturated samples the technique of isotopic replacement can be used in conjunction with SANS since saturation can be effected with either H2O or D2O. In this case information about the chemical composition of the phases is obtained from an analysis of the intensity ratio I/I. Results are consistent with the presence of a separate phase containing water molecules and ions in a matrix of the nonionic units. A Guinier analysis gives a radius of gyration of 17 Å for a water-saturated cesium salt of an E-MAA copolymer.  相似文献   

2.
Results of swelling and small-angle scattering experiments on samples of nylon-6 swollen with heavy water are discussed on the basis of the lamellar and switchboard models. The small-angle neutron scattering (SANS) intensity is very sensitive to the distribution of water in swollen samples, while the small-angle x-ray scattering (SAXS) data characterize the dry samples. The observed values of the mean-square fluctuation of scattering-density can be explained by a model with assumed inhomogeneous swelling of the amorphous phase.  相似文献   

3.
The physical structure of Nafion membranes has been investigated by small-angle neutron scattering (SANS) and small-angle x-ray scattering (SAXS). Samples in the acid form may exhibit two scattering peaks. The first, observed by SANS at an angle corresponding to a Bragg spacing of 180 Å, is shown to arise from structures in crystalline regions. A second peak at larger scattering angles is shown to arise from ion-containing regions which may be swollen with water. Salt-form samples made by soaking the acid form in an aqueous salt solution can also exhibit the same two scattering signals. But in amorphous salt-form samples produced by quenching from the melt the first peak is absent. This permits a more accurate study of the second peak by SAXS, which shows that the second scattering component is present as a maximum over a wide range of water contents but is absent in a sample dried at 200°C. The position of the peak shifts to lower scattering angles (or larger spacings) at higher water contents. Possible structural models that might give rise to the maximum are discussed. A calculation of the SAX invariant is made and results are consistent with a phase separation of a large fraction of the water.  相似文献   

4.
The analysis of latex particles by small-angle scattering (small-angle X-ray scattering, SAXS; small-angle neutron scattering, SANS) is reviewed. Small-angle scattering techniques give information on the radial structure of the particles as well as on their spatial correlation. Recent progress in instrumentation allows to extend SANS and SAXS to the q-range of light scattering. Moreover, contrast variation employed in SANS and SAXS studies may lead to an unambiguous determination of the radial scattering length density of the particles in situ, i.e. in suspension. Hence, these techniques are highly valuable for a comprehensive analysis of polymer colloids as shown by the examples discussed herein.  相似文献   

5.
Spherical micelles of the diblock copolymer/surfactant Brij 700 (C(18)EO(100)) in water (D(2)O) solution have been investigated by small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). SAXS and SANS experiments are combined to obtain complementary information from the two different contrast conditions of the two techniques. Solutions in a concentration range from 0.25 to 10 wt % and at temperatures from 10 to 80 degrees C have been investigated. The data have been analyzed on absolute scale using a model based on Monte Carlo simulations, where the micelles have a spherical homogeneous core with a graded interface surrounded by a corona of self-avoiding, semiflexible interacting chains. SANS and SAXS data were fitted simultaneously, which allows one to obtain extensive quantitative information on the structure and profile of the core and corona, the chain interactions, and the concentration effects. The model describes the scattering data very well, when part of the EO chains are taken as a "background"contribution belonging to the solvent. The effect of this becomes non-negligible at polymer concentrations as low as 2 wt %, where overlap of the micellar coronas sets in. The results from the analysis on the micellar structure, interchain interactions, and structure factor effects are all consistent with a decrease in solvent quality of water for the PEO block as the theta temperature of PEO is approached.  相似文献   

6.
7.
The phase behavior and structure of a four-component microemulsion system forming droplets with an oil core surrounded by the non-ionic C12E5 surfactant in water and "decorated" by long PEO chains using the block copolymer/surfactant Brij 700 has been studied. The surfactant-to-oil volume ratio, the coverage density of the droplets with decorating molecules, and the temperature were varied. For a surfactant-to-oil volume ratio of 2, the solutions form isotropic and clear solutions at room temperature, and the addition of Brij molecules stabilize the micelles: the transition to an opaque phase is shifted to higher temperatures as the surface coverage increases. At a surfactant-to-oil ratio of 1, the isotropic microemulsion phase is confined to a very narrow range of temperature, which location is shifted to increasing temperature, as the amount of Brij at the surface of the droplet is increased. For large surface coverages, the lower emulsification boundary varies roughly linearly with the surface coverage. The structure of the droplet phase was investigated by small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). For a surfactant-to-oil ratio of 2, the SANS data revealed a transition from rodlike to spherical particles when Brij molecules are added to the system, which induces a larger curvature of the surfactant film. For a surfactant-to-oil ratio of 1, the droplets are nearly spherical at all surface coverages. The intermicellar interactions effects become increasingly more pronounced as Brij is added, due to the introduction of the highly swollen corona. A quantitative analysis of some of the SAXS data was done using an advanced model based on Monte Carlo simulations. It demonstrates the strong chain-chain interactions within the corona and confirms the increased interparticle interactions, as the coverage density is increased.  相似文献   

8.
 The analysis of the interaction of micelles formed by a blockcopolymer is given by means of small-angle X-ray (SAXS) and small-angle neutron scattering (SANS). The blockcopolymer consists of poly(styrene) and poly(ethylene oxide) (molecular weight of each block: 1000 g/mol) and forms well-defined micelles (weight-association number: 400, weight-average diameter: 15.4 nm) in water. The internal structure has been studied previously (Macromolecules 29:4006 (1996)) by SAXS. There it has been shown that the micelles are spherical objects. The structure factor S(q) as a function of the scattering vector q (q=(4π/λ) sin (θ/2); λ: wavelength of the radiation in the medium; θ: scattering angle) can be extracted from both sets of small-angle scattering data (SANS: q≤0.4 nm-1; SAXS: q≤0.6 nm-1). It is shown that particle interaction in the present system can be described by assuming soft interaction which is modeled by a square-step potential. Received: 12 May 1997 Accepted: 9 July 1997  相似文献   

9.
The self-assembling structures and dynamics of surfactants determine most of their macroscopic physicochemical properties and performances. Herein, we review recent work on the self-assembly of surfactants by small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) in conjunction with cryogenic transmission electron microscopy (Cryo-TEM) from the perspective of researchers having only limited theoretical knowledge of these techniques but expert in surfactants. Emphasis is placed on the structural analysis of typical surfactant aggregates over a wide range of size scales from nanometers up to microns, including spherical and rod-like micelles, wormlike micelles, vesicles, liquid crystals and coacervates, by combining different numerical approaches to the treatment of small-angle scattering data with the direct Cryo-TEM imaging method. Furthermore, the complementarity between SAXS and SANS, and between the scattering techniques and Cryo-TEM, that is, specific contributions of these techniques, is also covered.  相似文献   

10.
Aqueous gel-like solutions of N-acyl-L-aspartic acids (C(n)Asp, n=14, 16, 18) and N-dodecanoyl-beta-alanine (C(12)Ala) were prepared at pH 5-6 at room temperature. Structures of supramolecular assemblies in the solutions were investigated by atomic force microscopy (AFM), small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS). The cross-sectional radii, 22-30 ?, of helical, fibrous assemblies were obtained from analysis of SANS for 1% gel-like C(n)Asp solutions. Three Bragg spacings were observed in a SANS spectrum for a 6% C(16)Asp solution. C(n)Asp molecules are associated into the unit chain of a helical bilayer strand with a diameter of 50-60 ?. Unit chains where linear bilayers twist form a double strand with helical sense of approximately 650-? pitch. It was confirmed from AFM images that cylindrical fibers in a gel-like C(12)Ala solution had a circular cross-section. The SAXS spectrum showed characteristic Bragg spacings. Cylindrical C(12)Ala fibers consist of multilamellar layers of period approximately 34-?. The fibers are laterally organized with period 365-380 ?. Copyright 2000 Academic Press.  相似文献   

11.
A simple explanation is given for the low-temperature density minimum of water confined within cylindrical pores of ordered nanoporous materials of different pore size. The experimental evidence is based on combined data from in-situ small-angle scattering of X-rays (SAXS) and neutrons (SANS), corroborated by additional wide-angle X-ray scattering (WAXS). The combined scattering data cannot be described by a homogeneous density distribution of water within the pores, as was originally suggested from SANS data alone. A two-step density model reveals a wall layer covering approximately two layers of water molecules with higher density than the residual core water in the central part of the pores. The temperature-induced changes of the scattering signal from both X-rays and neutrons are consistent with a minimum of the average water density. We show that the temperature at which this minimum occurs depends monotonically on the pore size. Therefore we attribute this minimum to a liquid-solid transition of water influenced by confinement. For water confined in the smallest pores of only 2 nm in diameter, the density minimum is explained in terms of a structural transition of the surface water layer closest to the hydrophilic pore walls.  相似文献   

12.
Carbon black Corax N330 (hereinafter called CB) is used as a filler in elastomers. The properties of the surface are important for the binding of the elastomer to the carbon black particles. Porod's law requires the intensity to satisfy I(q) approximately q(-alpha) with alpha = 4 for large q. Rieker et al. observed alpha = 3.7 +/- 0.1 for small-angle X-ray scattering (SAXS) data and concluded that the particle surface is fractally rough. Ruland critized this and suggested that the observed deviation is due to fluctuations of the spacing of the graphitic layer planes ("graphenes") which contribute a component I(q)fluc = 1Cflucq(-2) to the intensity component satisfying Porod's law. We studied CB by nitrogen adsorption, high-resolution transmission electron microscopy, synchroton SAXS, and small-angle neutron scattering (SANS). Our SAXS experiments with samples of high transmission (Tr = 0.96) confirmed the form of the scattering curves published by Rieker et al., but the correction for I(q)fluc restored Porod's law. SANS experiments were performed with a sample of low transmission in order to analyze the high q-range for scattering from voids and isolated graphenes. We found I(q) approximately q(-beta) with beta approximately 2 at q > 2.5 nm(-1) and will show that this intensity component requires graphenes consisting of about 12 benzene rings. The contrast matching technique revealed the presence of inaccessible voids. The SANS data for a sample with Tr = 0.363 satisfy Porods law, in contrast to the SAXS data for the high transmission samples. The latter discrepancy is likely due to the lower resolution of the SANS measurements because of wavelength smearing and multiple scattering. A SANS sample with Tr = 0.97 shows a minor deviation from Porod's law only (alpha = 3.9). The original SANS data and the SAXS data corrected for the fluctuation component indicate that the CB surface is essentially smooth.  相似文献   

13.
High-resolution small-angle X-ray scattering (SAXS), complemented by small-angle neutron scattering (SANS) and dynamic light scattering (DLS) experiments, was used to study the effect of curvature on the bilayer structure of dioleoyl-phosphatidylcholine (DOPC) and dioleoyl-phosphatidylserine (DOPS) unilamellar vesicles (ULVs). Bilayer curvature, as a result of finite vesicle size, was varied as a function of vesicle radius and determined by DLS and SANS measurements. Unilamellarity of large DOPC ULVs was achieved by the addition of small amounts (up to 4 mol %) of the charged lipid, DOPS. A comparison of SANS data over the range of 0.02 < q <0.2 A-1 indicated no change in the overall bilayer thickness as a function of ULV diameter (620 to 1840 A). SANS data were corroborated by high-resolution (0.06 < q <0.6 A-1) SAXS data for the same diameter ULVs and data obtained from planar samples of aligned bilayers. Both the inner and outer leaflets of the bilayer were found to be indistinguishable. This observation agrees well with simple geometric models describing the effect of vesicle curvature. However, 1220-A-diameter pure DOPS ULVs form asymmetric bilayers whose structure can most likely be rationalized in terms of geometrical constraints coupled with electrostatic interactions, rather than curvature alone.  相似文献   

14.
The triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (L64, PEO13PPO30PEO13) in 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) can form lamellar liquid crystalline (Lα). The effect of apolar cyclohexane molecules on the Lα phase was investigated by using polarized optical microscopy (POM) and small-angle x-ray scattering (SAXS). The results of POM and SAXS show that a suitable amount of cyclohexane can contribute to the formation of lamellar liquid crystals, and the ordering of Lα phase is increased. For comparison, the effect of polar water on Lα phase was explored. After adding water, both EO groups and [BF4] anion can form hydrogen bonds with water molecules, which weakens the electrostatic interactions between L64 and [Bmim][BF4] and therefore the ordering of lamellar structures is destroyed.  相似文献   

15.
Small-angle scattering (SAS) techniques, like small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), were used to measure and thus to validate the accuracy of a novel technology for virus sizing and concentration determination. These studies demonstrate the utility of SAS techniques for use in quality assurance measurements and as novel technology for the physical characterization of viruses.  相似文献   

16.
Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.  相似文献   

17.
While the solubility of native alpha-, beta-, gamma-cyclodextrins (CDs) in water rises with temperature, the opposite is true for their methylated derivatives (mCDs; per-dimethylated beta-CD and per-trimethylated gamma-CD). The mCDs are well-soluble in cold water and crystallize upon heating, which we associate with the hydrophobic effect. To study the hydrophobic effect and hydration of CDs and mCDs dissolved in water (D 2O), we performed small-angle X-ray and neutron scattering (SAXS and SANS) measurements. The experimental scattering curves were put on absolute scale and compared to scattering curves calculated from crystal structures using the cube method. The results of the comparison indicate that (i) in solution, CDs and mCDs are in monomeric form, (ii) van der Waals and solute excluded volumes can be related by introducing a shell of a thickness that correlates with the solute's structure and solute-water interactions, and (iii) the SAXS curves calculated under the assumption of a uniform distribution of electron density in the solute molecules agree with experimental ones for CDs, but not for mCDs. The temperature and concentration dependence of SAXS curves is significant for mCDs and weak for CDs and is discussed in terms of solute-solute interactions. Specifically, these interactions become more attractive in solutions of mCDs with increasing temperature, concentration, or both, in accord with mCDs' negative temperature coefficient of solubility in water.  相似文献   

18.
Samples of a poly(ethylene oxide) trisiloxane surfactant, water, and decane have been investigated using pulsed field gradient NMR (PGSE NMR) and small-angle neutron scattering (SANS) to determine the solution structure. The surfactant/water weight ratio has been kept constant at a value of 3/2, with variation of the oil (decane) content. In the neutron scattering measurements the temperature was varied from 23 °C up to the phase separation limit for these systems. The combined NMR and SANS data show that on addition of decane, the system exists as a hexagonal phase of cylindrical decane-containing micelles at all temperatures investigated. The addition of decane changes significantly the values for the structure parameters in the system, inducing an increase in periodicity of 12–15 ?. By substitution of decane with its deuterated equivalent, decane-d22, it was possible to obtain detailed information on the structural organization of the oil component in this ternary mixture.  相似文献   

19.
The phase behavior of silica solutions containing organic and inorganic cations was studied at room temperature using conductivity, pH, and small-angle scattering experiments. A critical aggregation concentration (cac) was observed at approximately 1:1 ratio of SiO(2)/OH(-) for all cation solutions from conductivity and pH studies. From this cac, a phase diagram of the system was developed with three distinct phase regions in pseudoequilibrium: a monomer/oligomer region (I), a monomer/oligomer/nanoparticle region (II), and a gel region (III). Small-angle X-ray and neutron scattering (SAXS and SANS) on solutions of region II formed with tetrapropylammonium hydroxide (TPAOH) revealed that the nanoparticles have a core-shell structure. Structure analysis of the SAXS and SANS data was best fit by a core-shell oblate ellipsoid model. A polydisperse set of core-shell spheres also fit the data well although with lower agreement factors. Similar nanoparticle morphologies were found in solutions of TMAOH, CsOH, and NaOH.  相似文献   

20.
The orientation of platelets in micro-meter-thick polymer-clay nanocomposite films was investigated with small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD). The films with various clay contents (15–60% by mass fraction) were prepared by a layer-by-layer approach from polymer-clay solutions that led to the formation of a high degree of orientation in both polymer and clay platelets. Shear-induced orientation of polymer-clay solutions is compared with the orientation of polymer-clay films. SANS, SAXS, and WAXD, with beam configurations in and perpendicular to the spread direction of the film, were used to determine the structure and orientation of platelets. In all films, the clay platelets oriented preferentially in the plane of the film. The observed differences in semidilute solutions, with clay surface normal parallel to the vorticity direction, versus bulk films and with clay surface normal parallel to the shear gradient direction at clay mass fractions of 40 and 60%, were attributed to the collapses of clay platelet during the drying process. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3237–3248, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号