首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of poly(arylene ether)s were successfully prepared by aromatic, nucleophilic substitution reactions with various perfluoroalkyl‐activated bisfluoromonomers with 4,4′‐bishydroxybiphenyl and 4,4′‐bishydroxyterphenyl. 4,4′‐Bishydroxyterphenyl was synthesized through the Grignard coupling reaction of magnesium salt of 4‐bromoanisole with dibromobenzene followed by demethylation with pyridine–hydrochloride. The products obtained by the displacement of fluorine atoms exhibited good inherent viscosity, up to 0.77 dL/g, and number‐average molecular weights up to 69,300. These poly(arylene ether)s showed very good thermal stability, up to 548 °C for 5% weight loss according to thermogravimetric analysis under synthetic air, and high glass‐transition temperatures, up to 259 °C according to differential scanning calorimetry, depending on the exact repeat unit structure. These polymers were soluble in a wide range of organic solvents, such as N‐methylpyrrolidone, dimethylformamide, tetrahydrofuran, toluene, and CHCl3, and were insoluble in dimethyl sulfoxide and acetone. Thin films of these poly(arylene ether)s showed good transparency and exhibited tensile strengths up to 132 MPa, moduli up to 3.34 GPa, and elongations at break up to 84%, depending on their exact repeating unit structures. These values are comparable to those of high‐performance thermoplastic materials such as poly(ether ether ketone) (PEEK) and Ultem poly(ether imide) (PEI). These poly(arylene ether)s exhibited low dielectric constants. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 55–69, 2002  相似文献   

2.
4,4′-Bis(phenoxy)diphenyl sulfone ( 1 ), 4,4′-bis(phenylthio)diphenyl sulfone ( 2 ), and 1 substituted with various electron-donating groups in the phenoxy units were synthesized and polymerized under oxidative reaction conditions. The presence of methyl, tert-butyl, and methoxy groups as substituents on the phenoxy groups of 1 increases both the yield and the solubility of the resulting polymers. The structure-reactivity relationship of the monomers and of the growing species were discussed based on a radical-cation mechanism of polymerization. Monomers of high nucleophilicity and resonance stabilized radical-cation growing species are crucial to achieve polymers of high molecular weight. The structure of the polymers and in several cases of their chain ends were determined by 1H-NMR spectroscopy. The mechanism of termination and the side reactions occuring during this polymerization process were discussed based on the structure of the resulting polymers.  相似文献   

3.
The mass spectral fragmentation pattern of 4,4′-bipyridyl is described. The fragmentation proposals which differ from those previously reported are supported by high resolution mass measurements and metastable transitions.  相似文献   

4.
Two new bis(benzylidenephthalide)monomers were synthesized by melt condensation of phenylacetic acid with 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and with 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA). A mixture of three isomers for each monomer was obtained and polymerized with diamines to produce new polyimidines. Polymerizations were conducted with m-xylylenediamine (MXDA) or 4,4′-oxydianiline (ODA) in quantitative yields for the undehydrated intermediate. Inherent viscosities ranged from 0.17 to 0.35 dL/g in N,N-dimethylformamide (DMF) or N-methyl-2-pyrrolidone (NMP). These intermediate poly(hydroxylactams) were thermally dehydrated to polyimidines which exhibited a 10% weight loss, as high as 546°C in nitrogen. Inherent viscosities of the dehydrated (cured) polyimidines ranged from 0.14 to 0.20 dL/g in NMP. Brittle films could be cast from NMP solutions.  相似文献   

5.
Thick films of tetra-N-glycidyl epoxy resin of p,p′-diaminodiphenyl methane (TGDDM) were prepared using p,p′-diaminodiphenyl methane (DDM), p,p′-diaminodiphenyl sulfone (DDS) and diethylene triamine (DETA) as curing agent with or without the epoxy fortifiers PGEHA and VCDRC (at 20 phr level). These thick films were used to evaluate various physical, mechanical, chemical resistant and dielectric properties.  相似文献   

6.
7.
8.
Aromatic-aliphatic polyamides of high molecular weight were prepared by the direct polycondensation of 3,4′- and 4,4′-oxydianiline with aliphatic diacids with 4-10 methylene groups in a triphenyl phosphite/pyridine system. Polyamides prepared from 3,4′-oxydianiline are characterized by greater solubility, lower melt temperatures, and lower glass transition temperatures than are those from 4,4′-oxydianiline. Aromatic polyamides from 3,4′- and 4,4′-oxydianiline and isophthalic and terephthalic acids were also prepared and characterized.  相似文献   

9.
A novel tetraimide dicarboxylic acid was synthesized with the ring‐opening addition of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride, 4,4′‐oxydianiline, and trimellitic anhydride in a 1/2/2 molar ratio in N‐methyl‐2‐pyrrolidone followed by azeotropic condensation to tetraimide dicarboxylic acid. A series of poly(amide imide imide)s (PAIIs) with inherent viscosities of 0.8–1.1 dL/g were prepared from tetraimide dicarboxylic acid with various aromatic diamines by direct polycondensation. Most of the PAIIs were readily soluble in a variety of amide polar solvents and even in less polar m‐cresol and pyridine. Solvent‐cast films had tensile strengths ranging from 99 to 106 MPa, elongations at break ranging from 8 to 13%, and initial moduli ranging from 2.0 to 2.3 GPa. The glass‐transition temperatures of these PAIIs were recorded at 244–276 °C. They had 10% weight losses at temperatures above 520 °C in air or nitrogen atmospheres. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1092–1102, 2002  相似文献   

10.
Starting with 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and methyl aminobenzoate, we synthesized a novel rodlike imide‐containing monomer, N,N′‐bis[p‐(methoxy carbonyl) phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BMBI). The polycondensation of BMBI with dimethyl terephthalate and ethylene glycol yielded a series of copoly(ester imide)s based on the BMBI‐modified poly(ethylene terephthalate) (PET) backbone. Compared with PET, these BMBI‐modified polyesters had higher glass‐transition temperatures and higher stiffness and strength. In particular, the poly(ethylene terephthalate imide) PETI‐5, which contained 5 mol % of the imide moieties, had a glass‐transition temperature of 89.9 °C (11 °C higher than the glass‐transition temperature of PET), a tensile modulus of 869.4 MPa (20.2 % higher than that of PET), and a tensile strength of 80.8 MPa (38.8 % higher than that of PET). Therefore, a significant reinforcing effect was observed in these imide‐modified polyesters, and a new approach to higher property polyesters was suggested. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 852–863, 2002; DOI 10.1002/pola.10169  相似文献   

11.
The mass spectra of 4,4′-oxybispyridine and 4,4′-thiobispyridine are reported. In the former the base peak is due to the molecular ion and the fragmentation routes involve loss of H, CO, HCN, C2H2N and CsHO from the molecular ion as well as rupture of the central bonds. In the latter the base peak is also due to the molecular ion and the fragmentation routes involve loss of H, CS, S, HCN and C2HS as well as central bond rupture.  相似文献   

12.
New aromatic dicarboxylic acids having kink and crank structures, 2,2′-bis(p-carboxyphenoxy) biphenyl and 2,2′-bis(p-carboxyphenoxy)-1,1′-binaphthyl, were synthesized by the reaction of p-fluorobenzonitrile with biphenyl-2,2′-diol and 2,2′-dihydroxy-1,1′-binaphthyl, respectively, followed by hydrolysis. Biphenyl-2,2′-diyl-and 1,1′-binaphthyl-2,2′-diyl-containing aromatic polyamides having inherent viscosities of 0.58–1.46 dL/g and 0.63–1.30 dL/g, respectively, were obtained by the low-temperature solution polycondensation of the corresponding diacid chlorides with aromatic diamines. These polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, m-cresol, and pyridine. Transparent, pale yellow, and flexible films of these polymers could be cast from the DMAc or NMP solutions. These aromatic polyamides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 210–272 and 260–315°C, respectively. They began to lose weight around 380°C, with 10% weight loss being recorded at about 450°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
A metal–organic framework with a novel topology, poly[sesqui(μ2‐4,4′‐bipyridine)bis(dimethylformamide)bis(μ4‐4,4′,4′′‐nitrilotribenzoato)trizinc(II)], [Zn3(C21H12NO6)2(C10H8N2)1.5(C3H7NO)2]n, was obtained by the solvothermal method using 4,4′,4′′‐nitrilotribenzoic acid and 4,4′‐bipyridine (bipy). The structure, determined by single‐crystal X‐ray diffraction analysis, possesses three kinds of crystallographically independent ZnII cations, as well as binuclear Zn2(COO)4(bipy)2 paddle‐wheel clusters, and can be reduced to a novel topology of a (3,3,6)‐connected 3‐nodal net, with the Schläfli symbol {5.62}4{52.6}4{58.87} according to the topological analysis.  相似文献   

14.
A series of isomeric poly(thioether ether imide)s (PTEIs) containing both thioether and ether linkages were prepared by nucleophilic substitution reaction of isomeric bis(chlorophthalimide)s with 4,4′‐thiobisbenzenethiol. The inherent viscosities of these polymers were in the range of 0.40–0.56 dL/g in m‐cresol at 30°C. The Tg values of PTEIs were 196–236°C; T5% values reached up to 509–529°C in nitrogen and 508–534°C in air, which indicated this kind of polyimide possessed excellent thermal stability. The hydrolytic stability was arranged in the order: a > b > c > d > e, and improved with increasing the content of 3‐substituted phthalimide unit in the polymer backbone. Flexible films could be cast from the polymer solution with a solid content of 10%. The PTEI films exhibited good mechanical properties with tensile strengths of 90–104 MPa, elongations at break of 6.6–7.9%, and tensile moduli of 2.3–2.6 GPa. The minimum complex viscosity of PTEIs c was about 100 Pa·s at 310°C and the minimum melt viscosity of PTEIs (a–e) decreased with increasing the content of unsymmetrical 3,4′‐substituted phthalimide units. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Polyamides from 4,4′-dipiperidyl, 1,2-ethylene-, and 1,3-propylene- bridged dipiperidyls were prepared via solution and interfacial polycondensation techniques. In sharp contrast to the polyamides from N,N′-alkyl-substituted alkylene diamines and aromatic diacids, the polyamides from 4,4′-dipiperidyls are high-melting (up to 455°C) and alcohol-insoluble. Tough films were cast from formic acid solutions of the polymers; fiber of good physical properties was prepared from a formic acid solution of the polyterephthalamide of 1,2-di(4-piperidyl)ethane.  相似文献   

16.
To prepare thermally stable and high‐performance polymeric films, new solvent‐soluble aromatic polyamides with a carbamoyl pendant group, namely poly(4,4′‐diamino‐3′‐carbamoylbenzanilide terephthalamide) (p‐PDCBTA) and poly(4,4′‐diamino‐3′‐carbamoylbenzanilide isophthalamide) (m‐PDCBTA), were synthesized. The polymers were cyclized at around 200 to 350 °C to form quinazolone and benzoxazinone units along the polymer backbone. The decomposition onset temperatures of the cyclized m‐ and p‐PDCBTAs were 457 and 524 °C, respectively, lower than that of poly(p‐phenylene terephthalamide) (566 °C). For the p‐PDCBTA film drawn by 40% and heat‐treated, the tensile strength and Young's modulus were 421 MPa and 16.4 GPa, respectively. The film cyclized at 350 °C showed a storage modulus (E′) of 1 × 1011 dyne/cm2 (10 GPa) over the temperature range of room temperature to 400 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 775–780, 2000  相似文献   

17.
Novel phenylated polyamides having inherent viscosities in the range of 0.2–0.4 were prepared by the ring-opening polyaddition of 2,2′-p-phenylenebis(4,4-diphenyl-5-oxazolone) with aliphatic diamines in polar aprotic solvents. Similarly, unsubstituted polyamides were obtained from 2,2′-p-phenylenebis-5-oxazolone and both aliphatic and aromatic diamines. The phenylated polyamides were highly soluble in a wide range of solvents including tetrahydrofuran and dioxane, while the unsubstituted polymers showed limited solubility in the solvents. No marked differences in thermal stability between the phenylated and unsubstituted polyamides were noted, and all the polyamides began to decompose at around 250°C in both air and nitrogen.  相似文献   

18.
In the title compound, (C10H9N2)2[Pt(CN)6]·2C10H8N2 or [(Hbpy)+]2[Pt(CN)6]2−·2bpy, where bpy is 4,4′‐bipyridine, the Hbpy+ cations and bpy mol­ecules form a hydrogen‐bonded two‐dimensional cationic approximately square grid parallel to the (110) plane. The [Pt(CN)6]2− dianions reside in the cavities within this grid, with the nitrile N atoms forming weak hydrogen bonds with the CH groups in the cationic lattice.  相似文献   

19.
The crystal structure of the title compound, poly­[bis‐[copper(I)‐μ‐(4,4′‐bipyridyl)‐N:N′]‐μ‐dimolybdato‐O:O′],[Cu2(C10H8N2)2{Mo2O7}]n, consists of {Mo2O7}2? units (with the central O atom lying on twofold symmetry axes) and [Cu(4,4′‐bipy)]nn+ chains (bipy = bipyridyl); the chains are generated by a c‐glide‐plane operation. The {Mo2O7}2? units are covalently bridged to two [Cu(4,4′‐bipy)]nn+ chains, forming a complex with a bridged double‐chain structure. The Cu—O and Cu—N distances are 2.191 (3) and 1.933 (3) Å, respectively.  相似文献   

20.
5,5′,6,6′‐Tetrahydroxy‐3,3,3′,3′‐tetramethyl spirobisindane (TTSBI) was polycondensed with 4,4′‐dichlorodiphenyl sulfone (DCDPS) or with 4,4′‐bis(4‐chlorophenyl sulfonyl) biphenyl (BCSBP) in DMSO. Concentration and feed ratio were optimized to avoid gelation and to obtain a maximum yield of multicyclic polyethers free of functional groups. Regardless of these reaction conditions, only low fractions of perfect multicycles were obtained from DCDPS apparently due to steric hindrance of ring closure. Under the same conditions high fractions of perfect multicycles were achieved with the longer and more flexible DCSBP. The reaction products were characterized by MALDI‐TOF mass spectrometry, 1H‐NMR spectroscopy viscosity, and DSC measurements. Relatively low glass transition temperatures (Tgs ≈ 160–175 °C) were found. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3732–3739, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号