首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Electrolytic oxidation of 4,5,7,8-tetramethyl[2.2]paracyclophane (I) yields a paramagnetic species which by ESR. spectroscopic evidence must be ascribed to the dimeric radical cation I2 · ⊕. Analogous dimers are obtained from the 12, 13, 15, 16-tetradeuterio- and 1, 1, 10, 10, 12, 13, 15, 16-octadeuterio-derivatives of I so that all coupling constants can be unequivocally assigned to sets of equivalent protons. The hyperfine data for I2 · ⊕ are consistent with an effective D2h or D2d symmetry, the four benzene rings lying in parallel planes.  相似文献   

2.
《Tetrahedron: Asymmetry》1999,10(3):511-517
Two chiral β-diketones, 1,3-bis[(S)-(4-[2.2]paracyclophanyl)]propane-1,3-dione (BPPD) and [1-(S)-(4-[2.2]paracyclophanyl)-3-phenyl]propane-1,3-dione (PPPD), were synthesized by acylation of (S)-4-acetyl[2.2]paracyclophane with methyl esters from the corresponding carboxylic acids. 4-Acetyl[2.2]paracyclophane was synthesized in a quantitative yield by the reaction of [2.2]paracyclophane-4-carboxylic acid with methyllithium.  相似文献   

3.
E. Langer  H. Lehner 《Tetrahedron》1973,29(2):375-383
Concerning the question of transanular II-II-interactions in [2.2]metacyclophane, [2.2]paracyclophane and 2,2′-spirobiindane.From the quotient of the two dissociation constants (K1/K2) of [2.2]metacyclophane-bis-chromtricarbonyl (9·0 ± 1·9) it was concluded that there are no transanular II-II-interactions between the two benzene rings. The corresponding values for the bis-chromtricarbonyl-complexes of 2,2′-spirobiindane and [2.2]paracyclophane are 8·0 ± 1·5 and 104, resp. These results are supported by IR-spectroscopical data of the CO-frequencies of the Cr(CO)3-complexes of [2.2]metacyclophane and some derivatives, of 2,2′-spirobiindane and [2.2]paracyclophane.Moreover, UV-spectroscopic studies of tetracyanoethylene complexes of arenes are shown to be insignificant with regard to transanular II-II-interactions.  相似文献   

4.
From the reaction mixtures in the uncatalyzed polybromination of [2.2]paracyclophane by the action of excess Br2 in CCl4, there have been found along with the known products — 4,15- and 4,16-dibromo[2.2]paracyclophanes — two new aromatic tribromides of this series, which have been isolated in pure form: 4,12,15- and 4,15,16-tribromo[2.2]paracyclophanes. Special experiments demonstrated that the mixtures of these tribromides are formed as a result of competitive monobromination of 4,15-dibromo[2.2]paracyclophane; the 4,15,16-tribromo[2.2]paracyclophane, together with still another newly isolated isomer of this series — 4,8,12-tribromo[2.2]paracyclophane — is formed as a result of competitive monobromination of 4,16-dibromo[2.2]paracyclophane. As an explanation of the features of the orienting effect of substituents in these competing reactions, a rule was proposed: On the conventional orientation (from the electronic point of view) of entry of the bromine atom into the substituted ring (para > ortho > meta), a steric limitation is imposed on its attack in the pseudo-gem-position, owing to the bulky bromine atom that is transannularly positioned above it in the neighboring aromatic ring. The structures of all of the tribromides were established on the basis of elemental analyses, mass spectrometry, and1H NMR spectrometry (including PMR using the homonuclear Overhauser effect). The data obtained in this work indicate that the 4,12,15-tribromo[2.2]paracyclophane and 4,15,16-tribromo[2.2]paracyclophane are predecessors of the two tetrabromides previously obtained by Cram — 4,7,12,15- and 4,5,15,16-tetrabromo[2.2]paracyclophanes; and the 4,8,12-tribromo[2.2]paracyclophane is a possible predecessor of 4,8,12,16-tetrabromo[2.2]paracyclophane, which is unknown up to the present time.A. N. Nesmeyanov Institute of Heteroorganic Compounds, Russian Academy of Sciences, 117813 Moscow. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 8, pp. 1837–1843, August, 1992.  相似文献   

5.
Stereoselectivity of allylboration of 4-formyl[2.2]paracyclophane, 4-acetyl[2.2]paracyclophane, and 4-hydroxy-5-formyl[2.2]paracyclophane was studied and the relative configurations of the homoallylic alcohols obtained were established. Optically pure (Sp,Sc)-(+)-4-(4-hydroxy-1-methylbut-3-enyl)[2.2]paracyclophane and (Rc,Sc)-(+)-4-hydroxy-5-(4-hydroxybut-3-enyl)[2.2]paracyclophane were synthesized. The possibility of using (Sp,Sc)-(+)-4-(4-hydroxy-4-methylbut-3-enyl)[2.2]paracyclophane as a recoverable chiral auxiliary in asymmetric allylboration of aldehydes was demonstrated. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 914–921, May, 2000.  相似文献   

6.
A comparative molecular orbital study of [2.2]paracyclophane and simple arenes as ligands toward a Cr(CO)3 group was performed with the aim of accounting for the observed coordination patterns. While the inter-ring repulsion is an important factor in [2.2]paracyclophane activation, it is not the only one. The molecular orbitals of two arene rings stacked parallel to each other were analyzed in some detail. The inward hybridization (toward the other ring) of the (arene)2 HOMO was shown to reduce the strength of consequent bonding with the Cr(CO)3 is fragment. The overall stabilization of [2.2]paracyclophane complex with Cr(CO)3 is enhanced by a reduction of the inter-ring repulsion and strengthening of the Ar−Cr bond, and reduced by weakening of the intra-ring carbon-carbon bonds. The inter-ring repulsion increases with approach of the arenes to each other, as appears to happen in the structure of [2.2]paracyclophane complex with Cr(CO)3. This explains the high donor ability of the free ring of the (arene)2Cr(CO)3 complex toward another Cr(CO)3 fragment. It was proposed that the stabilization of the [2.2]paracyclophane complex with Cr(CO)3 results ultimately from the relaxation of the strained framework of [2.2]paracyclophane. The kinetic factor in Cr(CO)3 complexation was also studied by analyzing the charges on competing arene rings in monoaryl-substituted derivatives of [2.2]paracyclophanes. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 151–157, January, 1998.  相似文献   

7.
This paper reports the synthesis of 4,7,12,15-tetra(4'-dihexylaminostyryl)[2.2]paracyclophane (1), 4-(4'-dihexylaminostyryl)-7,12,15-tri(4' '-nitrostyryl)[2.2]paracyclophane (2), 4,7-bis(4'-dihexylaminostyryl)-12,15-bis(4' '-nitrostyryl)-[2.2]paracyclophane (3), 4,7,12-tris(4'-dihexylaminostyryl)-15-(4' '-nitrostyryl)[2.2]paracyclophane (4), 4,15-bis(4'-dihexylaminostyryl)-7,12-bis(4' '-nitrostyryl)[2.2]paracyclophane (5), and 4,12-bis(4'-dihexylaminostyryl)-7,15-bis(4' '-nitrostyryl)[2.2]paracyclophane (6). These molecules represent different combinations of bringing together distyrylbenzene chromophores containing donor and acceptor groups across a [2.2]paracyclophane (pCp) bridge. X-ray diffraction studies show that the lattice arrangements of 1 and 3 are considerably different from those of the parent chromophores 1,4-bis(4'dihexylaminostyryl)benzene (DD) and 1,4-di(4'-nitrostyryl)benzene (AA). Differences are brought about by the constraint by the pCp bridge and by virtue of chirality in the "paired" species. The absorption and emission spectra of 1-6 are also presented. Clear evidence of delocalization across the pCp structure is observed. Further, in the case of 2, 3, and 4, emission from the second excited state takes place.  相似文献   

8.
Ashraf A. Aly 《Tetrahedron》2003,59(10):1739-1747
Syntheses of various classes of unreported heterophanes derived from [2.2]paracyclophane are herein reported. The key to their successful synthesis depends on the photochemical synthesis of pyridazinophane and quinolinophane-2(1H)-one from freshly prepared 4-([2.2]paracyclophanyl)-azo-4′-[2.2]paracyclophane and 4-([2.2]paracyclophanyl)cinnnamanilide, respectively. Reactions of 4-amino-[2.2]paracyclophane with either acetyl- or benzoylacetone afforded condensed products. Then ring closure using polyphosphoric acid (PPA) at 120°C gave, in near quantitative yields, quinolinophanes. Reactions of [2](4,7)-indano-[2]paracyclophane-1-ylidene-propanedinitrile with active methylene compounds afforded fused spiro-pyranoindanoparacyclophane derivatives.  相似文献   

9.
A series of alpha,omega-donor-substituted distyrylbenzene dimers held together by the [2.2]paracyclophane core were designed, synthesized, and characterized. Different substituents were chosen to modulate the strength of the donor nitrogen groups and to allow the molecules to be either neutral and soluble in nonpolar organic solvents or charged and water-soluble. The specific neutral structures are (in order of decreasing donor strength) 4,7,12,15-tetra[N,N-bis(6' '-chlorohexyl)-4'-aminostyryl]-[2.2]paracyclophane (1N), 4,7,12,15-tetra[(N-(6' '-chlorohexyl)carbazol-3'-yl)vinyl]-[2.2]paracyclophane (2N), and 4,7,12,15-tetra[N,N-bis(4' '-(6' '-chlorohexyl)phenyl)-4'-aminostyryl]-[2.2]paracyclophane (3N). The charged species are 4,7,12,15-tetra[N,N-bis(6' '-(N,N,N-trimethylammonium)hexyl)-4'-aminostyryl]-[2.2]paracyclophane octaiodide (1C), 4,7,12,15-tetra[(N-(6' '-(N,N,N-trimethylammonium)hexyl)carbazol-3'-yl)vinyl]-[2.2]paracyclophane octaiodide (2C), and 4,7,12,15-tetra[N,N-bis(4' '-(6' '-(N,N,N-trimethylammonium)hexyl)phenyl)-4'-aminostyryl]-[2.2]paracyclophane octaiodide (3C). Two-photon excitation spectra, measured using the two-photon induced fluorescence technique, show in toluene the following trend for the two-photon cross sections (delta): 3N > 2N > 1N. In water the delta values follow the same order, 3C approximately 2C > 1C, but are smaller (approximately one-third). Significantly, the fluorescence quantum yield (eta) in water decreases much more for 1, relative to 2 and 3. The two-photon action cross sections (deltaeta) of 2C and 3C are 294 GM and 359 GM, respectively. These values are among the highest reported thus far. These results show that, to maximize the deltaeta in this class of chromophores, one needs to fine-tune the magnitude of the charge transfer character of the excited state, to minimize fluorescence quenching in polar media.  相似文献   

10.
The complexation reactions of monoaryl- and diaryl-substituted [2.2]paracyclophanes with (NH3)3Cr(CO)3 have been studied. The aromatic rings of [2.2]paracyclophane are more favorable for coordination than aryl substituents. This leads to the regioselective formation of the corresponding mono- or binuclear tricarbonylchromium complexes. In some cases, the tricarbonylchromium group is coordinated to the aryl ring of the substituent to form (in low yields) the corresponding mononuclear complex or binuclear complexes with both the aromatic ring of paracyclophane and the aryl ring of the substituent involved in coordination. The structure of such complex, namely, [4-(η6-2,4,6-trimethylpheny)-11-16-η6-[2,2]paracyclophane]bis[tricarbonylchromium(0)] was confirmed by X-ray diffraction study. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 142–150, January, 1998.  相似文献   

11.
All of the point groups common to organic chemistry except two are illustrated by known compounds that are rigid [2.2]paracyclophane derivatives. Examples are given of transannular directing effects by acetyl, nitro, and acetoxyl substituents attached to [2.2]paracyclophane. In bromination or chloromethylation, proton loss of a sigma complex is rate-determining, and the oxygens already in the molecule remove the proton being substituted. The synthesis of [2.2.2](1,2,4)cyclophane and [3.2.2](1,2,5)cyclophane, and their unusual chemical properties are described. Transannular hydride shifts out of methyl groups due to proximity effects are reported. Torsional racemizations and epimerizations of [2.2]paracyclophane derivatives are reviewed. The diradical intermediates formed have been intercepted by either H· donors, or by addition to substituted olefins. To account for the stereochemical course of addition and substitution reactions in the side-chains of [2.2]- and [4,2]paracyclophanes, new types of bridged carbonium ions are suggested. Conformational equilibria in the four-carbon side-chain of [4.2]paracyclophane derivatives are discussed.  相似文献   

12.
A Hartwig-Buchwald addition of a variety of chiral amines to rac-4-bromo-[2.2]paracyclophane and rac-trifluoromethanesulfonic acid (4-[2.2]paracyclophane) ester was performed with high diastereoselectivities. Kinetic racemic resolution of the starting materials was achieved, providing a rapid access to enantiomerically enriched 4-bromo-[2.2]paracyclophane and the corresponding enantiomerically pure [2.2]paracyclophane amines. Additionally, the first reaction of a secondary amine with a [2.2]paracyclophane halide was achieved.  相似文献   

13.
The 4,4'-(1,2-ethanediyl)bisbenzyl biradical (2) is clearly and efficiently generated by photolysis of [3.2]paracyclophane-2-one (8) in cyclohexane solution. This intermediate is also formed via two-photon processes from [2.2]paracyclophane (3) and 1,2-bis(4-chloromethylphenyl)ethane (4). The products arising thermally from biradical 2 are [2.2]paracyclophane and [2.2.2.2]paracyclophane (11) (under high-intensity conditions). Furthermore, two-laser two-color flash photolysis shows that biradical 2 is photostable in solution at room temperature. Thus, formation of p-xylylene (1) from 2 occurs neither thermally nor photochemically.  相似文献   

14.
Two pseudo-para substituted bis-diimino[2.2]paracyclophane ligands (4,16-bis(picolinaldimine)-[2.2]paracyclophane (BPPc) and 4,16-bis(methyl-picolinaldimine)-[2.2]paracyclophane (BmPPc)) were prepared by the condensation reaction of the appropriate picolinaldimine with 4,16-diamino-[2.2]paracyclophane (2). An improved synthesis of 2 from [2.2]paracyclophane also is reported. BPPc (3a): monoclinic, P2(1)/c, a = 8.2238(11) A, b = 15.336(2) A, c = 8.4532(11) A, beta = 98.578(3) degrees, V = 1054.2(2) A(3), Z = 2. To investigate the binding properties of the bis-diimino[2.2]paracyclophane ligands, binuclear rhenium(I) tricarbonyl chloride complexes [Re(CO)(3)Cl](2)(micro-BPPc) (5a) and [Re(CO)(3)Cl](2)(micro-BmPPc) (5b) were prepared and fully characterized by infrared spectroscopy, (1)H NMR spectroscopy, elemental analysis, UV-visible absorption spectroscopy, and cyclic voltammetry. Two model complexes, Re(tolyl-pyCa)(CO)(3)Cl (4) (tolyl-pyCa = N-(p-tolyl)-2-pyridinecarboxaldimine) and [Re(CO)(3)Cl](2)(micro-PBP) (6) (PBP = p-phenylenebis(picolinaldimine)), also are reported. The dimeric compounds 5 and 6 each undergo two one-electron, predominantly diimine-centered reduction processes. Spectroscopic data and comproportionation constants (5a, 23 +/- 9; 5b, 23 +/- 9; 6, 2750 +/- 540) are consistent with relatively weak interactions between the diimine groups mediated by the paracyclophane bridging group, and these results are consistent with steric and electronic factors.  相似文献   

15.
The reaction of arene-ruthenium complexes ([RuCl26-arene)]2) with [2.2]paracyclophane in the presence of AgBF4 provides double- and triple-layered arene-ruthenium complexes of [2.2]paracyclophane in excellent yield.  相似文献   

16.
The monosubstituted derivative 4‐ethynyl[2.2]paracyclophane, C18H16, (I), and the four disubstituted isomers, 4,12‐, (II), 4,13‐, (III), 4,15‐, (IV), and 4,16‐diethynyl[2.2]paracyclophane, (V), all C20H16, show the usual distortions of the [2.2]paracyclophane framework. The crystal packing is analyzed in terms of C—H...π interactions, some with H...π as short as 2.47 Å, in which the cyclophane rings and/or the triple‐bond systems may act as acceptors. For compounds (I) and (IV), the known `7,11'‐type cyclophane packing is observed, with a herring‐bone pattern of molecules in a layer structure.  相似文献   

17.
New planar-chiral hydroxycarbonyl [2.2]paracyclophane derivatives, 4-acetyl-13-bromo-5-hydroxy[2.2]paracyclophane (Br-АНРС, 63%) and 4-benzoyl-13-bromo-5-hydroxy[2.2]paracyclophane (Br-BHPC, 53%), were synthesized and reacted with the enantiomers of α-phenylethylamine to form corresponding Schiff bases, 12-bromo-4-hydroxy-5[1-(1-phenyl-ethylimino)-ethyl]-[2.2]paracyclophane and 12-bromo-4-hydroxy-5[1-(1-phenyl-ethylimino)-(phenyl)methylen-[2.2]paracyclophane. The diastereomers of the imines were resolved and their absolute configurations and consequently the corresponding configurations of the enantiomers of Br-АНРС were determined by X-ray diffraction. Enantiomerically pure Schiff bases were applied as ligands to form catalysts for the enantioselective addition reaction of diethylzinc with benzaldehyde where 1-phenylpropanol was obtained with 77–91% ee.  相似文献   

18.
The radical anions of [2.2]paracyclophane-1,9-diene ( 2 ) and its 1,10,12,13,15,16-hexadeuterio derivative 2 -D6, as well as those of 4,5,7,8-tetramethyl[2.2]paracyclophane-1,9-diene ( 3 ) and its 12,13,15,16-tetradeuterio derivative 3 -D4, have been studied by ESR spectroscopy. The coupling constants for 2 ?· at 178 K are 0.422 mT for four equivalent olefinic protons and 0.046 and 0.020 mT, each for a set of four equivalent aromatic protons. This hyperfine pattern is consistent with either benzene ring bearing two pairs of equivalent protons and it points to a lowering of the anticipated D2h symmetry. The ESR spectra of 2 ?· are strongly temperature dependent, due to modulation of the two coupling constants of 0.046 and 0.020 mT; these have opposite signs and average to 0.013 mT at 273 K. The experimental findings are interpreted in terms of a transition state of D2h symmetry, 33 kJ/mol above two interconverting equivalent conformations of lower symmetry. Several pieces of evidence suggest that this symmetry is D2, i.e., the benzene rings in 2 ?· are twisted in opposite directions about the vertical axis. Temperature dependence of the ESR spectra, resulting from modulation of the hyperfine interactions with the aromatic protons, is also observed for 2 -D6?· and 3 ?·. In the case of 3 ?·, the olefinic protons are, as expected, only equivalent in pairs, the pertinent coupling constants being 0.560 and 0.325 mT. Upon standing at low temperatures, 2 ?· and 3 ?· gradually convert into the radical anions of [2.2]paracyclophane ( 1 ) and its 4,5,7,8-tetramethyl derivative, respectively. At higher temperatures, cleavage of one bridging chain in 2 ?· also occurs, with the formation of the radical anion of (E)-4,4′-dimethylstilbene ( 7 ). Both reactions of 2 ?· must involve the transient radical anion of [2.2]paracyclophane-1-ene ( 4 ) as proved by the observation of the spectra of 1 ?· and 7 ?· with 4 as the starting material.  相似文献   

19.
In benzene‐1,2,3‐tricarbonitrile, C9H3N3, the packing of the two independent molecules is three‐dimensional and complex, involving inter alia bifurcated (C—H)2...N systems from neighbouring CH groups. In [2.2]paracyclophane‐4,5,12,13‐tetracarbonitrile, C20H12N4, the [2.2]paracyclophane systems display the usual distortions, namely lengthened C—C bonds and widened sp3 angles in the bridges, narrow angles in the six‐membered rings at the bridgehead atoms, and flattened boat conformations of the rings. The molecules are linked by a series of C—H...N interactions to form layers parallel to the ab plane.  相似文献   

20.
A series of alpha,omega-bis donor substituted oligophenylenevinylene dimers held together by the [2.2]paracyclophane core were synthesized to probe how the number of repeat units and through-space delocalization influence two-photon absorption cross sections. Specifically, the paracyclophane molecules are tetra(4,7,12,15)-(4'-dihexylaminostyryl)[2.2]paracyclophane (3R(D)), tetra(4,7,12,15)-(4' '-(4'-dihexylaminostyryl)styryl)[2.2]paracyclophane (5R(D)), and tetra(4,7,12,15)-(4' "-(4' '-(4'-dihexylaminostyryl)styryl)styryl)[2.2]paracyclophane (7R(D)). The compounds bis(1,4)-(4'-dihexylaminostyryl)benzene (3R) and bis(1,4)-(4' '-(4'-dihexylaminostyryl)styryl)benzene (5R) were also synthesized to reveal the properties of the "monomeric" counterparts. The two-photon absorption cross sections were determined by the two-photon induced fluorescence method using both femtosecond and nanosecond pulsed lasers as excitation sources. While there is a red shift in the linear absorption spectra when going from the "monomer" chromophore to the paracyclophane "dimer" (i.e., 3R --> 3R(D), 5R --> 5R(D)), there is no shift in the two-photon absorption maxima. A theoretical treatment of these trends and the dependence of transition dipole moments on molecular structure rely on calculations that interfaced time-dependent density functional theory (TDDFT) techniques with the collective electronic oscillator (CEO) program. These theoretical and experimental results indicate that intermolecular interactions can strongly affect B(u) states but weakly perturb A(g) states, due to the small dipole-dipole coupling between A(g) states on the chromophores in the dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号