首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Two new series of Boc‐N‐α,δ‐/δ,α‐ and β,δ‐/δ,β‐hybrid peptides containing repeats of L ‐Ala‐δ5‐Caa/δ5‐Caa‐L ‐Ala and β3‐Caa‐δ5‐Caa/δ5‐Caa‐β3‐Caa (L ‐Ala = L ‐alanine, Caa = C‐linked carbo amino acid derived from D ‐xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MSn spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc‐group, and the side chain. The dipeptide positional isomers are differentiated by the collision‐induced dissociation (CID) of the protonated peptides. The loss of 2‐methylprop‐1‐ene is more pronounced for Boc‐NH‐L ‐Ala‐δ‐Caa‐OCH3 (1), whereas it is totally absent for its positional isomer Boc‐NH‐δ‐Caa‐L ‐Ala‐OCH3 (7), instead it shows significant loss of t‐butanol. On the other hand, second isomeric pair shows significant loss of t‐butanol and loss of acetone for Boc‐NH‐δ‐Caa‐β‐Caa‐OCH3 (18), whereas these are insignificant for its positional isomer Boc‐NH‐β‐Caa‐δ‐Caa‐OCH3 (13). The tetra‐ and hexapeptide positional isomers also show significant differences in MS2 and MS3 CID spectra. It is observed that ‘b’ ions are abundant when oxazolone structures are formed through five‐membered cyclic transition state and cyclization process for larger ‘b’ ions led to its insignificant abundance. However, b1+ ion is formed in case of δ,α‐dipeptide that may have a six‐membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di‐, tetra‐, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The regioselectivity involved in the gas-phase hydride reduction of α,β-unsaturated carbonyl compounds by pentacoordinate silicon hydride ions is investigated. The kinetics and product distributions of the reactions of acrolein, methyl vinyl ketone and cyclohex-2-enone with monoalkoxysiliconate ions of the general composition RSiH3(OR′)? were examined with the flowing afterglow–triple quadrupole technique. All three substrates react by hydride transfer and by formation of a siliconate adduct in which hydride reduction of the organic reactant has occurred. The structures of these adducts and the hydride transfer products were identified by various tandem mass spectrometric protocols, including analysis of competitive collision-induced dissociation (CID) reactions and comparisons of CID spectra obtained from reference ions with known structures. 1,4-Reduction forming an enolate ion product is found to be the dominant or exclusive process with all three substrates, i.e. acrolein (70 ± 5%), methyl vinyl ketone (72 ± 5%) and cyclohex-2-enone (100%). Comparisons are made between these gas-phase results and the regioselectivity reported for analogous condensed-phase reactions. The observed behavior is discussed in terms of the reaction thermochemistry.  相似文献   

3.
The presence of the [M + H]+ ions and the absence of the monomer molecular ions M in the mass spectra of some tertiary α- and γ-nitrosocarbonyl compounds is reported. This effect is caused by the rearrangement of the mobile hydrogen in the α-carbonyl position in the fragmentation pattern of the dimer molecular ions 2M.  相似文献   

4.
In the electron impact mass spectra of some alkyl α- and β-hydroxyesters (introduced using the gas chromatography/mass spectrometry (GC/MS) technique), the absence of the molecular ion M and the presence of the [M + 1]+ ion instead is observed. This phenomenon is especially characteristic of C3? C6 glycolates and diethyl malate, and is due to chemical auto-ionization—ion-molecule reactions in the high concentration gradient at the top of the GC peak. The existence of the [M ? 2], [M ?1]+ and M ions in the mass spectra of other β- and α-hydroxyesters is discussed.  相似文献   

5.
Methyl 2-oxocycIoalkane carboxylate structures are proposed lor the [M ? MeOH] ions from dimethyl adipate, pimelate, suberate and azelate. This proposal is based on a comparison of the metastable ion mass spectra and the kinetic energy releases for the major fragmentation reaction of these species with the same data for the molecular ions of authentic cyclic β-keto esters. The mass spectra of α,α,α′,α′-d4-pimelic acid and its dimethyl ester indicate that the α-hydrogens are involved only to a minor extent in the formation of [M ? ROH] and [M ? 2ROH] ions, while these α-hydrogens are involved almost exclusively in the loss of ROH from the [M ? RO˙]+ ions (R = H or CH3). The molecules XCO(CH2)7COOMe (X = OH, Cl) form abundant ions in their mass spectra with the same structure as the [M ? 2MeOH] ions from dimethyl azelate.  相似文献   

6.
The collision-induced dissociation mass-analysed ion kinetic energy (CID MIKE) spectra (electron impact and chemical ionization) of five α-diazo-ω-arylsulphonylaminoalkan-2-ones and corresponding N-arylsulphonylazetidin-3-ones and N-arylsulphonylpyrrolidin-3-ones were studied. The [M ? N2]+˙ and [MH ? N2]+ ions of two types of the diazo ketones provide CID MIKE spectra similar to those of the corresponding M+˙ and MH+ of the heterocyclic compounds, i.e. a cyclization analogous to that in solution takes place. For the other three types of diazo compounds the Wolff rearrangement prevails in both the gas and liquid phases. The effect of the substituents on the cyclization process was studied. The data obtained permit the results of acid-catalysed cyclization of similar diazo ketones to be predicted on the basis of their CID MIKE spectra. Chemical ionization provides a closer similarity with reactions in solution than electron impact ionization, which can be rationalized by the protonation of the diazo ketone molecule being the driving force of the cyclization reaction either in solution or in the ion source of a mass spectrometer.  相似文献   

7.
The mass spectra of a series of N‐aryl α,β‐unsaturated γ‐lactams were studied. Besides the molecular ion, the three characteristic fragments such as [M+‐29], [M+‐55], and [M+‐82] were commonly found in a series of N‐Aryl α,β‐unsaturated γ‐lactams in EI/MS. Further more the mechanism for the interpretation of these fragments is also de scribed.  相似文献   

8.
The main fragmentation pathway of ionized hydroxyallenes (1) consists of a methyl loss. Extensive deuterium-labelling experiments indicate that the terminal allenic carbon is implied in this fragmentation. Collisional activation spectra indicate a propenyl-acylium structure (a) for these [M – CH3]+ ions which can originate from a 1,4-hydroxyl migration followed by hydrogen rearrangements. Isomeric hydroxyacetylenes (2) behave similarly, also giving rise, by methyl loss, to acylium ions a. It is proposed that 2+ ˙ is irreversibly isomerized into 1+ ˙ by a 1,3-hydrogen transfer ‘catalysed’ by the hydroxy group. The proposed internal proton-bound complex justifies also the easier loss of water from 2+˙. Ethyl loss is also a prominent fragmentation for the hydroxyallene and hydroxy-acetylene homologues.  相似文献   

9.
The relative importance of the rearrangement ions [M ? Br ? CO]+, [M ? Br2 ? CO]+ and [M ? HBr2 ? CO]+ in the mass spectra of the title compounds is compared with the amounts of α-methoxyketone formed on reduction of these compounds with a Zn/Cu couple in methanol. It is suggested that the quantitative correlation found reflects the electron releasing powers of the substituents on the α carbons.  相似文献   

10.
The mass spectra (20 eV electron energy) of a wide range of %Δ5-3β-hydroxy C19 steroid TMS ethers have been examined with the aid of high-resolution mass measurements, together with deuterium and oxygen-18 labelling data. The validity of many previously proposed fragmentation modes has been confirmed. A number of ions regarded as diagnostic have been shown to be less specific than had been formerly supposed. Several novel fragmentations have been observed and investigated.  相似文献   

11.
The high resolution mass spectra (500 eV) of some α,β-unsaturated steroidal ketones have been studied and compared with the spectra of the corresponding α-chloromercuri ketones. In the latter, the carbon-mercury bond frequently remains intact at the expense of the fission of two carbon-carbon bonds. The abundance of mercury-containing ions allows the use of the mercury atom fingerprint in confirming ring B fragmentation of the steroid nucleus at C(6)–C(7) and C(9)–C(10) for 5α-androst-1-ene-3,17-dione, 1,4-androstadiene-3,17-dione and their 2-chloromercuri derivatives; and at C(7)–C(8) and C(9)–C(10) for 1,4,6-androstatriene-3,17-dione, 1,4,6-androstarien-17 β-ol-3-one and their 2-chloromercuri derivatives. 2-Chloromercuri-1,4,6-androstatriene-3,17-dione and 2-chloromercuri-1,4,6-androstatrien-17 β-ol-3-one also give an abundant ion as the result of ring C fragmentation at C(8)–C(14) and C(11)–C(12), the chloromercuri group being replaced by a hydrogen atom. This ring C cleavage gives the only recognizable distinctive fragmentation ion for 1,4,6-pregnatriene-3,20-dione and 2-chloromercuri-1,4,6-pregnatriene-3,20-dione. For most of the mercurated steroids, the low resolution mass spectra (70 eV) are reported. In these spectra, the fragmentation patterns are similar to those obtained using the higher ionization energy employed for the high resolution spectra.  相似文献   

12.
The secondary α-acetylbenzyl and α-benzoylbenzyl cations, as well as their tertiary analogues, have been generated in a mass spectrometer by electron impact induced fragmentation of the corresponding α-bromoketones. These ions belong to the interesting family of destabilized α-acylcarbenium ions. While primary α-acylcarbenium ions appear to be unstable, the secondary and tertiaiy ions exhibit the usual behaviour of stable entities in a potential energy well. This can be attributed to a ‘push-pull’ substitution at the carbenium ion centre by an electron-releasing phenyl group and an electron-withdrawing acyl substituent. The characteristic unimolecular reaction of the metastaible secondary and tertiary α-acylbenzyl cations is the elimination of CO by a rearrangement reaction involving a 1,2-shift of a methyl group and a phenyl group, respectively. The loss of CO is accompanied by a very large kinetic energy release, which gives rise to broad and dish-topped peaks for this process in the mass-analysed ion kinetic energy spectra of the corresponding ions. This behaviour is attributed to the rigid critical configuration of a corner-protonatei cyclopropanone derivative and a bridged phenonium ion derivative, respectively, for this reaction. For the tertiary α-acetyl-α-methylbenzyl cations, it has been shown by deuterium labelling and by comparison of collisional activation spectra that these ions equilibrate prior to decomposition with their ‘protomer’ derivatives formed by proton migration from the α-methyl substituent to the carbonyl group and to the benzene ring.  相似文献   

13.
Under Ammonia chemical Ionization conditions the source decompositions of [M + NH4]+ ions formed from epimeric tertiary steroid alchols 14 OHβ, 17OHα or 17 OHβ substituted at position 17 have been studied. They give rise to formation of [M + NH4? H2O]+ dentoed as [MHsH]+, [MsH? H2O]+, [MsH? NH3]+ and [MsH? NH3? H2O]+ ions. Stereochemical effects are observed in the ratios [MsH? H2O]+/[MsH? NH3]+. These effects are significant among metastable ions. In particular, only the [MsH]+ ions produced from trans-diol isomers lose a water molecule. The favoured loss of water can be accounted for by an SN2 mechanism in which the insertion of NH3 gives [MsH]+ with Walden inversion occurring during the ion-molecule reaction between [M + NH4]+ + NH3. The SN1 and SNi pathways have been rejected.  相似文献   

14.
Tertiary α-carbomethoxy-α,α-dimethyl-methyl cations a have been generated by electron impact induced fragmentation from the appropriately α-substituted methyl isobutyrates 1–4. The destabilized carbenium ions a can be distinguished from their more stable isomers protonated methyl methacrylate c and protonated methyl crotonate d by MIKE and CA spectra. The loss of I and Br˙ from the molecular ions of 1 and 2, respectively, predominantly gives rise to the destabilized ions a, whereas loss of Cl˙ from [3]+ ˙ results in a mixture of ions a and c. The loss of CH3˙ from [4]+˙ favours skeletal rearrangement leading to ions d. The characteristic reactions of the destabilized ions a are the loss of CO and elimination of methanol. The loss of CO is associated by a very large KER and non-statistical kinetic energy release (T50 = 920 meV). Specific deuterium labelling experiments indicate that the α-carbomethoxy-α,α-dimethyl-methyl cations a rearrange via a 1,4-H shift into the carbonyl protonated methyl methacrylate c and eventually into the alkyl-O protonated methyl methacrylate before the loss of methanol. The hydrogen rearrangements exhibit a deuterium isotope effect indicating substantial energy barriers between the [C5H9O2]+ isomers. Thus the destabilized carbenium ion a exists as a kinetically stable species within a potential energy well.  相似文献   

15.
The mass spectral fragmentation pathways of acyl and α-hydroxyalkyl derivatives of biferrocene and related compounds are presented. A substituent effect for the cleavage of the cyclopentadienyl ring-metal bonds has been found in the spectra of acyl derivatives. It has been shown that the fragmentation of α-hydroxyalkyl derivatives proceeded via the ions corresponding to the [M]+? ions of oxidation or hydrogenolysis products of the hydroxyl derivatives.  相似文献   

16.
The correlation between β2‐, β3‐, and β2,3‐amino acid‐residue configuration and stability of helix and hairpin‐turn secondary structures of peptides consisting of homologated proteinogenic amino acids is analyzed (Figs. 1–3). To test the power of Zn2+ ions in fortifying and/or enforcing secondary structures of β‐peptides, a β‐decapeptide, 1 , four β‐octapeptides, 2 – 5 , and a β‐hexadecapeptide, 10 , have been devised and synthesized. The design was such that the peptides would a) fold to a 14‐helix ( 1 and 3 ) or a hairpin turn ( 2 and 4 ), or form neither of these two secondary structures (i.e., 5 ), and b) carry the side chains of cysteine and histidine in positions, which will allow Zn2+ ions to use their extraordinary affinity for RS? and the imidazole N‐atoms for stabilizing or destabilizing the intrinsic secondary structures of the peptides. The β‐hexadecapeptide 10 was designed to a) fold to a turn, to which a 14‐helical structure is attached through a β‐dipeptide spacer, and b) contain two cysteine and two histidine side chains for Zn complexation, in order to possibly mimic a Zn‐finger motif. While CD spectra (Figs. 6–8 and 17) and ESI mass spectra (Figs. 9 and 18) are compatible with the expected effects of Zn2+ ions in all cases, it was shown by detailed NMR analyses of three of the peptides, i.e., 2, 3, 5 , in the absence and presence of ZnCl2, that i) β‐peptide 2 forms a hairpin turn in H2O, even without Zn complexation to the terminal β3hHis and β3hCys side chains (Fig. 11), ii) β‐peptide 3 , which is present as a 14‐helix in MeOH, is forced to a hairpin‐turn structure by Zn complexation in H2O (Fig. 12), and iii) β‐peptide 5 is poorly ordered in CD3OH (Fig. 13) and in H2O (Fig. 14), with far‐remote β3hCys and β3hHis residues, and has a distorted turn structure in the presence of Zn2+ ions in H2O, with proximate terminal Cys and His side chains (Fig. 15).  相似文献   

17.
The mass spectra of some halogenated β-sultones which have been determined show some common features. These include the absence of molecular or ions and the presence of abundant trihalomethyl and [M- trihalomethyl]+ ions. The latter can subsequently lose sulfur dioxide, ions are also observed in high abundance.  相似文献   

18.
The product ion mass spectra obtained by CID of the b9 ions derived by loss of neutral alanine from the MH+ ion of the peptides Tyr(Ala)9, (Ala)4Tyr(Ala)5, and (Ala)8TyrAla are essentially identical, indicative of full cyclization reaction to a common intermediate before fragmentation. This leads to abundant nondirect sequence ions in the product ion mass spectra of the b9 ions. The product ion mass spectra of the b8 ions from the first two peptides also are essentially identical. The fragmentation of the MH+ ions also leads to low intensity nondirect sequence ions in the product ion mass spectra. N-terminal acetylation blocks the cyclization and eliminates nondirect sequence fragment ions in the product ion mass spectra.  相似文献   

19.
Phosphorylated proteins play essential roles in many cellular processes, and identification and characterization of the relevant phosphoproteins can help to understand underlying mechanisms. Herein, we report a collision‐induced dissociation top‐down approach for characterizing phosphoproteins on a quadrupole time‐of‐flight mass spectrometer. β‐casein, a protein with two major isoforms and five phosphorylatable serine residues, was used as a model. Peaks corresponding to intact β‐casein ions with charged states up to 36+ were detected. Tandem mass spectrometry was performed on β‐casein ions of different charge states (12+, and 15+ to 28+) in order to determine the effects of charge state on dissociation of this protein. Most of the abundant fragments corresponded to y, b ions, and internal fragments caused by cleavage of the N‐terminal amide bond adjacent to proline residues (Xxx‐Pro). The abundance of internal fragments increased with the charge state of the protein precursor ion; these internal fragments predominantly arose from one or two Xxx‐Pro cleavage events and were difficult to accurately assign. The presence of abundant sodium adducts of β‐casein further complicated the spectra. Our results suggest that when interpreting top‐down mass spectra of phosphoproteins and other proteins, researchers should consider the potential formation of internal fragments and sodium adducts for reliable characterization.  相似文献   

20.
A study of the chemical ionization (CI) and collisional activation (CA) spectra of a number of α, β-unsaturated nitriles has revealed that the even-electron ions such as [MH]+ and [MNH4]+ produced under chemical ionization undergo decomposition by radical losses also. This results in the formation of M +˙ ions from both [MH]+ and [MNH4]+ ions. In the halogenated molecules losses of X˙ and HX compete with losses of H˙ and HCN. Elimination of X˙ from [MH]+ is highly favoured in the bromoderivative. The dinitriles undergo a substitution reaction in which one of the CN groups is replaced with a hydrogen radical and the resulting mononitrile is ionized leading to [M ? CN + 2H]+ under CI(CH4) or [M ? CN + H + NH4] and [M ? CN + H + N2H7]+ under CI(NH3) conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号