首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ternary system BaF2/CuF2/AlF3 is investigated by X‐ray diffraction techniques and an isothermal section at 620 °C is established. It exhibits ten quaternary phases and among them Ba45Cu28Al17F197. This fluoride has a triclinic cell: a = 14.024(1) Å, b = 23.778(1) Å, c = 25.480(1) Å, α = 90.44(1)°, β = 90.26(1)°, γ = 107.03(1)°, Z = 2. Its crystal structure was solved in the space group P1 (no1), from X‐ray single crystal data using 41976 unique reflections. It is built up from a complex arrangement of aluminium and copper fluorine polyhedra, which are regular [AlF6] and strongly distorted [CuF6] octahedra, [CuF6] trigonal prisms and [Cu2F10] bipolyhedral units constituted either by two octahedra, or one octahedron and one trigonal prism, connected by an edge. These polyhedra are organized in planes of about two octahedra thickness, which form a succession of sheets running perpendicularly to the [100] direction of the cell. Each sheet is constituted by infinite chains of distorted polyhedra connected by edges and vertices and linked together by the vertices of blocks of four and six polyhedra, involving aluminium fluorine octahedra and copper fluorine bipolyhedral units or octahedra. The barium ions, 10 to 14‐coordinated to fluorine atoms, ensure the electroneutrality of the structure. They are inserted inside the planes.  相似文献   

2.
Magnetochemistry of Fluoroargentates(II): Investigation of Ba[AgF4], Sr[AgF4], Ba2AgF6, K[AgF3], and Cs[AgF3] Ba[AgF4] (Θ = -4 K, μ = 1.92 μB), isostructural with K[BrF4] with planar [AgF4] groups, fullfil the Curie-Weiss-law, also Ba2AgF6 (Θ = 4 K, Θ = 1.85 μB) which is related with the structure of Ba2CuF6. The variante of perovskite-type K[AgF3] (orthorhombic) and Cs[AgF3] (tetragonal perovscite) show collective magnetic interactions (TN = 80 K, KAgF3, and 50 K, CsAgF3) and show a behaviour like AgF2 (TN160 K) correspondingly to the magnetic dilution. Above TN paramagnetism is nearly independend of tempearture.  相似文献   

3.
Disorder in Smectites in Dependence of the Interlayer Cation Fluorosmectites, [M0.5]inter[Mg2.5Li0.5]oct[Si4]tetO10F2 (M = Na, K, Rb, Cs), have been synthesised from the melt in gastight Mo crucibles. At the same layer charge of x = 0.5, which lies within the range of smectites, both, the crystallite size and the stacking order increases with the size of the interlayer cation. For microcrystalline Na‐hectorite both rotational (n120° and n60°) and translational (±0.145b) planar defects were identified, whereas for K‐hectorite only ±b/3 translational defects were found. Finally, Rb‐ and Cs‐hectorite show a normal Bragg‐type diffraction pattern. For Cs‐hectorite even single crystals may be found that display no diffuse scattering and allow a structure refinement (monoclinic, 1M‐polytype, C2/m, a = 5.2401(10)Å, b = 9.0942(10) Å, c = 10.7971(10)Å, β = 99.21 (2)°, V = 507.90(12) Å3, Z = 2). These 3D ordered smectites still show satisfactory intracrystalline reactivity and the interlayer cations may readily be exchanged for organocations.  相似文献   

4.
Complexes of trifluoromethanesulfonates (triflates) with alkali metals Na, Rb, Cs have been prepared in the presence of various macrocyclic polyether crowns [(12‐crown‐4), (15‐crown‐5) and (18‐crown‐6)]. Depending on the combination of alkali ion with crown, the complexes include separated ion pairs [Na(12‐crown‐4)2] [SO3CF3] ( 1 ) and contact ion pairs [Na(15‐crown‐5)] [SO3CF3] ( 2 ), [Rb(18‐crown‐6)] [SO3CF3] ( 3 ), and [Cs(18‐crown‐6)] [SO3CF3] ( 4 ), in which the triflate acts as a bidentate ligand. It is shown that the choice of crown ether is of paramount importance in determining the solid‐state structural outcome. The complex resulting from the pairing of crown ether ( 1 ) develops, when the crown ether is too small in relation to the alkali ion radius. When the cavity size of the crown ether is matched with the alkali ion radius, simple monomeric structures are identified in 2 , 3 and 4 . The title compounds crystallize in the monoclinic crystal system: 1 : space group P2/c with a = 9.942(3), b = 11.014(2), c = 10.801(3) Å, β = 97.30(2)°, V = 1173.1(4) Å3, Z = 2, R1 = 0.0812, wR2 = 0.1133: 2 : space group P21/m with a = 7.949(2), b = 12.063(3), c = 9.094(2) Å, β = 105.98(2)°, V = 838.3(4) Å3, Z = 2, R1 = 0.0869, wR2 = 0.1035: 3 : space group P21/c with a = 12.847(5), b = 8.448(2), c = 22.272(6) Å, β = 122.90(3)°, V = 2029.5(1) Å3, Z = 4, R1 = 0.0684, wR2 = 0.1044: 4 : space group P21/n with a = 12.871(3), b = 8.359(1), c = 19.019(4) Å, β = 92.61(2)°, V = 2044.2(6) Å3, Z = 4, R1 = 0.0621, wR2 = 0.0979.  相似文献   

5.
In the title compound, (C6H8N4)[AuCl4]Cl, the 4,4′‐bi(1H‐pyrazol‐2‐ium) dication, denoted [H2bpz]2+, is situated across a centre of inversion, the [AuCl4] anion lies across a twofold axis passing through Cl—Au—Cl, and the Cl anion resides on a twofold axis. Conventional N—H...Cl hydrogen bonding [N...Cl = 3.109 (3) and 3.127 (3) Å, and N—H...Cl = 151 and 155°] between [H2bpz]2+ cations (square‐planar node) and chloride anions (tetrahedral node), as complementary donors and acceptors of four hydrogen bonds, leads to a three‐dimensional binodal four‐connected framework with cooperite topology (three‐letter notation pts). The framework contains channels along the c axis housing one‐dimensional stacks of square‐planar [AuCl4] anions [Au—Cl = 2.2895 (10)–2.2903 (16) Å; interanion Au...Cl contact = 3.489 (2) Å], which are excluded from primary hydrogen bonding with the [H2bpz]2+ tectons.  相似文献   

6.
Single crystals of three new strontium nitridogermanates(IV) were grown in sealed niobium ampules from sodium flux. Dark red Sr4[GeN4] crystallizes in space group P21/c with a = 9.7923(2) Å, b = 6.3990(1) Å, c = 11.6924(3) Å and β = 115.966(1)°. Black Sr8Ge2[GeN4] contains Ge4– anions coexisting with [GeIVN4]8– tetrahedra and adopts space group Cc with a = 10.1117(4) Å, b = 17.1073(7) Å, c = 10.0473(4) Å and β = 115.966(1)°. Black Sr17Ge6N14 features the same anions alongside trigonal planar [GeIVN3]5– units. It crystallizes in P1 with a = 7.5392(1) Å, b = 9.7502(2) Å, c = 11.6761(2) Å, α = 103.308(1)°, β = 94.651(1)° and γ = 110.248(1)°.  相似文献   

7.
Synthesis and Crystal Structure of the Adducts [DB-18C6] · CH3CN · CH3CSOH and [DC-18C6](CH3CSOH)2 as well as of the Salt-like Compounds [Cs(B-15C5)2]CH3CSS and [Cs(DB-18C6)]2S5(DMF)21) The reaction products of crown ethers, cesium, and sulfur in aprotic solvents like acetonitrile and dimethylformamide strongly depend on the reaction conditions. Using CH3CN as a solvent, sometimes neutral host-guest adducts crystallize only, e.g., [dibenzo-18C6] · CH3CN · CH3CSOH (monoclinic, S. G. P21/c, Z = 4, a = 9.73(1) Å, b = 22.03(1) Å, c = 11.86(1) Å, β = 91.8(1)°) or [dicyclohexyl-18C6](CH3CSOH)2 (monoclinic, S. G. P21/n, Z = 2, a = 7.75(1) Å, b = 10.32(1) Å, c = 17.73(1) Å, β = 95.7(1)°). The monothioacetic acid, CH3CSOH, must be regarded as the first product of the hydrolysis of CH3CN. Furthermore, another product of this kind of hydrolysis, CH3CSSH, is obtained too. Therefore, we also obtain the salt-like compound [Cs(benzo-15C5)2]CH3CSS (monoclinic, S. G. C2/c, Z = 4, a = 16.05(1) Å, b = 16.73(1) Å, c = 13.11(1) Å, β = 106.3(1)°). If the solvent DMF is used, the pentasulfide [Cs(dibenzo-18C6)]2S5(DMF)2 crystallizes (monoclinic, S. G. P21/n, Z = 4, a = 14.79(1) Å, b = 14.24(1) Å, c = 25.74(1) Å, β = 92.7(1°. The S52? anions show the cis-conformation.  相似文献   

8.
Synthesis of Threedimensionally Ordered Intercalation Compounds of Hectorite A synthetic Cs‐fluorohectorite was intercalated with a large cationic pillar, 1, 4‐Dimethyl‐1, 4‐diazabicyclo[2.2.2]octane (DDABCO2+), and a microporous material is obtained (?pillared clay”?). Under appropriate conditions, complete cation exchange is feasible and the phase relationship between adjacent silicate layers is preserved. Starting with a three‐dimensionally (3D) ordered [1], and homogeneously charged [2] Cs‐hectorite, we succeeded to synthesize the first single crystalline and 3D ordered intercalation compound of a smectite and to characterize it by structure refinement ([DDABCO0.25]inter [Mg2.5Li0.5]oct [Si4]tetO10F2 , monoclinic, C2/m, a = 5.2635(9) Å, b = 9.1278(14) Å, c = 13.984(3) Å, β = 96.89 (2)°, V = 667.0(2) Å3, Z = 2). Much like the inorganic Cs+ cations in the starting material, the organic pillars bridge the interlamellar space in a defined way by penetrating into the hollows on the corrugated silicate surfaces on both sides of the interlamellar space. In this way the hexagonal cavities are forced to be arranged opposite of each other. The pillars are arranged with their C3‐axes lying in the plane of the interlayer space.  相似文献   

9.
The complexes [Cu(dpp)Br2] ( 1 ) and [Cu(dpp)2][CuBr2] ( 2 ) (dpp = 2,9‐diphenyl‐1,10‐phenanthroline) were synthesized and characterized by single‐crystal X‐ray diffraction methods. Reaction of copper(II) bromide with the dpp ligand in dichloromethane at room temperature afforded 1 , which is a rare example of non‐square planar four‐coordinate copper(II) complexes. Complex 1 crystallizes in the monoclinic space group C2/c with a = 15.352(3), b = 13.192(3), c = 11.358(2) Å, β = 120.61(3)°, V = 1979.6(7) Å3, Z = 4, Dcalc = 1.865 g cm?3. The coordination geometry about the copper center is distorted about halfway between square planar and tetrahedral. The Cu‐N distance is 2.032(2) Å and the Cu‐Br distance 2.3521(5) Å. Heating a CH2Cl2 or acetone solution of 1 resulted in complex 2 , which consists of a slightly distorted tetrahedral [Cu(dpp)2]+ cation and a linear two‐coordinate [CuBr2]? anion. 2 crystallizes in the triclinic space group with a = 10.445(2), b = 11.009(2), c = 18.458(4) Å, α = 104.72(3), β = 94.71(3), γ = 103.50(3)°, V = 1973.3(7) Å3, Z = 2, Dcalc = 1.602 g cm?3. The four Cu(1)‐N distances are between 2.042(3) and 2.067(3) Å, the distance of Cu(2)‐Br(1) 2.2268(8) Å, and the disordered Cu(3)‐Br(2) distances are 2.139(7) and 2.237(4) Å, respectively. Complex 2 could also be prepared by directly reacting CuBr with dpp in CH2Cl2.  相似文献   

10.
The title compound, [Th(C12H15O4)4]n, is the first homoleptic thorium–carboxylate coordination polymer. It has a one‐dimensional structure supported by the bidentate bridging coordination of the singly charged 3‐carboxyadamantane‐1‐carboxylate (HADC) anions. The metal ion is situated on a fourfold axis (site symmetry 4) and possesses a square‐antiprismatic ThO8 coordination, including four bonds to anionic carboxylate groups [Th—O = 2.359 (2) Å] and four to neutral carboxyl groups [Th—O = 2.426 (2) Å], while a strong hydrogen bond between these two kinds of O‐atom donor [O...O = 2.494 (3) Å] affords planar pseudo‐chelated Th{CO2...HO2C} cycles. This combination of coordination and hydrogen bonding is responsible for the generation of quadruple helical strands of HADC ligands, which are wrapped around a linear chain of ThIV ions [Th...Th = 7.5240 (4) Å] defining the helical axis.  相似文献   

11.
Due to powder diagrams, Na[AgF4] [a + 5,54; c = 10,56 Å], KAgF4 [a = 5,90; c = 11,15 Å], NaAuF4 [a = 5,64; c = 10,49 Å], KAuF4 [a = 5,99; c = 11,38 Å] und RbAuF4 [a = 6,18; c = 11,85 Å] crystallize tetragonal, KBrF4-type of structure with planar [MF4]-complexes (M = Ag, Au). Obviously LiAuF4 represents a monoclinic derivative of this structure.  相似文献   

12.
Chalcogenohalogenogallates(III) and -indates(III): A New Class of Compounds for Elements of the Third Main Group. Preparation and Structure of [Ph4P]2[In2SX6], [Et4N]3[In3E3Cl6] · MeCN and [Et4N]3[Ga3S3Cl6] · THF (X = Cl, Br; E = S, Se) [In2SCl6]2?, [In2SBr6]2?, [In3S3Cl6]3?, [In3Se3Cl6]3?, and [Ga3S3Cl6]3? were synthesised as the first known chalcogenohalogeno anions of main group 3 elements. [Ph4P]2[In2SCl6] ( 1 ) (P1 ; a = 10.876(4) Å, b = 12.711(6) Å, c = 19.634(7) Å, α = 107.21(3)°, β = 96.80(3)°, γ = 109.78(3)°; Z = 2) and [Ph4P]2[In2SBr6] ( 2 ) (C2/c; a = 48.290(9) Å, b = 11.974(4) Å, c = 17.188(5) Å, β = 93.57(3)°, Z = 8) were prepared by reaction of InX3, (CH3)3SiSSi(CH3)3 and Ph4PX (X = Cl, Br) in acetonitrile. The reaction of MCl3 (M = Ga, In) with Et4NSH/Et4NSeH in acetonitrile gave [Et4N]3[In3S3Cl6] · MeCN ( 3 ) (P21/c; a = 17.328(4) Å, b = 12.694(3) Å, c = 21.409(4) Å, β = 112.18(1)°, Z = 4), [Et4N]3[In3Se3Cl6] · MeCN ( 4 ) (P21/c; a = 17.460(4) Å, b = 12.816(2) Å, c = 21.513(4) Å, β = 112.16(2)°, Z = 4), and [Et4N]3[Ga3S3Cl6] · THF ( 5 ) (P21/n; a = 11.967(3) Å, b = 23.404(9) Å, c = 16.260(3) Å, β = 90.75(2)°, Z = 4). The [In2SX6]2? anions (X = Cl, Br) in 1 and 2 consist of two InSX3 tetrahedra sharing a common sulfur atom. The frameworks of 3, 4 and 5 each contain a six-membered ring of alternating metal and chalcogen atoms. Two terminal chlorine atoms complete a distorted tetrahedral coordination sphere around each metal atom.  相似文献   

13.
Novel Oxonium Halogenochalcogenates Stabilized by Crown Ethers: [H3O(Dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] and [H5O2(Bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] Two novel complex oxonium bromoselenates(II,IV) and –(II) are reported containing [H3O]+ and [H5O2]+ cations coordinated by crown ether ligands. [H3O(dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] ( 1 ) and [H5O2(bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] ( 2 ) were prepared as dark red crystals from dichloromethane or acetonitrile solutions of selenium tetrabromide, the corresponding unsubstituted crown ethers, and aqueous hydrogen bromide. The products were characterized by their crystal structures and by vibrational spectra. 1 is triclinic, space group (Nr. 2) with a = 8.609(2) Å, b = 13.391(3) Å, c = 13.928(3) Å, α = 64.60(2)°, β = 76.18(2)°, γ = 87.78(2)°, V = 1404.7(5) Å3, Z = 1. 2 is also triclinic, space group with a = 10.499(2) Å, b = 13.033(3) Å, c = 14.756(3) Å, α = 113.77(3)°, β = 98.17(3)°, γ = 93.55(3)°. V = 1813.2(7) Å3, Z = 1. In the reaction mixture complex redox reactions take place, resulting in (partial) reduction of selenium and bromination of the crown ether molecules. In 1 the centrosymmetric trinuclear [Se3Br10]2? consists of a central SeIVBr6 octahedron sharing trans edges with two square planar SeIIBr4 groups. The novel [Se3Br8]2? in 2 is composed of three planar trans‐edge sharing SeIIBr4 squares in a linear arrangement. The internal structure of the oxonium‐crown ether complexes is largely determined by the steric restrictions imposed by the aromatic rings in the crown ether molecules, as compared to complexes with more flexible unsubstituted crown ether ligands.  相似文献   

14.
The title compound has been prepared by hydrothermal synthesis and its crystal structure was determined by single crystal X-ray diffraction: space group P21/m, a = 4.8890(2), b = 14.3857(5), c = 7.9017(3) Å, β = 90.134(4)°, wR2 = 0.123, R = 0.045. Cu2+ has two different coordination polyhedra: an elongated square pyramidal [CuFO4] and square planar [CuO4] coordination in a 2:1 ratio. Edge-sharing double-pyramids and [CuO4] squares form zig-zag chains interconnected by [ZnO4] and [PO4] tetrahedra to form an open anionic framework structure whose channels are occupied by the K+ ions.  相似文献   

15.
The Tetracyanoborates M[B(CN)4], M = [Bu4N]+, Ag+, K+ The tetracyanoborate anion is prepared for the first time as the tetrabutylammonium salt by the reaction of [NBu4]BX and BX3 (X = Br, Cl) in toluene with KCN. After purification and recrystallization of the product from CHCl3 colorless and needle size single crystals of [Bu4N][B(CN)4] are formed. After metathesis with AgNO3 the silver salt and subsequently with KBr the potassium salt is prepared. The three salts are characterized by single crystal X‐ray diffraction (Ag[B(CN)4] P 43m, a = 5.732(1) Å, V = 188.3 Å3, Z = 1, R1 = 0.75%; K[B(CN)4] I41/a, a = 6.976(1), c = 14.210(3) Å, V = 691.5 Å3, Z = 4, R1 = 1.90%; [Bu4N][B(CN)4] Pnna, a = 17.765(3), b = 11.650(2), c = 11.454(2) Å, V = 2370.5 Å3, Z = 4, R1 = 6.09%) and by NMR‐, IR‐, Raman‐ as well by UV‐spectroscopy.  相似文献   

16.
The crystal structure of trans-pyH[MoBr4py2] has been determined: orthorhombic, Pnma (No. 62), a = 16.197(3), b = 13.995(3), c = 8.615(1) Å, Z = 4, Dc = 2.23, Do = 2.20(3) g/cm3, V = 1 953(1) Å3. R1, Rw = 0.057 and 0.053. Trans-[MoBr4py2]? anions with staggered conformation of pyridine rings are located on the mirror planes. Mo? Br, Mo? N(pyridine) distances are 2.593(1), 2.573(1), 2.227(8) and 2.213(7) Å. Cations are located on the symmetry centers. The cation in trans-pyH[MBr4py2] can be replaced. Trans-NH4[MBr4py2] · H2O, Cs[MBr4py2], LH[MBr4py2] (M = Mo, W; L = 4-methylpyridine, 4-pic; 2,2′-bipyridyl, bipy) were prepared. The compounds of molybdenum and tungsten with the same chemical composition are isostructural. All compounds react with pyridine and 4-methylpyridine. The products are trans-MBr3L3, and in the case of molybdenum, also trans-MoBr3py2(4-pic). Bromine oxidizes trans-MI[MBr4py2] to trans-MBr4py2.  相似文献   

17.
Brown crystals of [PPh4]2[Se2Br6] ( 1 ) and [PEtPh3]2[Se2Br6] ( 2 ) were obtained when selenium and bromine reacted in acetonitrile solution in the presence of tetraphenylphosphonium bromide and ethyltriphenylphosphonium bromide, respectively. The crystal structure of 2 has been determined by X‐ray methods and refined to R = 0.0420 for 4161 reflections. The crystals are monoclinic, space group P21/n with Z = 2 and a = 13.055(3) Å, b = 12.628(3) Å, c = 13.530(3) Å, β = 92.40(3)° (293(2) K). In the solid state structure of 2 the dinuclear hexabromo‐diselenate(II) anion is centrosymmetric and consists of two distorted almost square‐planar SeBr4 units sharing a common edge through two bridging Br atoms. The terminal SeII–Br bond distances are found to be 2.419(1) and 2.445(1) Å, the bridging μBr–SeII bond distances 2.901(1) and 2.802(1) Å.  相似文献   

18.
Preparation, Characterization, and Crystal Structures of Tetraiodoferrates(III) The extremely air and moisture sensitive tetraiodoferrates MFeI4 with M = K, Rb and Cs have been synthesized by reaction of Fe, MI and I2 at 300°C in closed quartz ampoules. The essentially more stable alkylammonium tetraiodoferrates NR4FeI4 with R = H, C2H5, n-C3H7, n-C4H9 and n-C5H11 can be obtained by reaction of Fe, NR4I and I2 in nitromethane. The Raman and UV/Vis-spectra of the black compounds show the existence of tetrahedral [FeI4]? ions in the structures. The crystal structure of the monoclinic CsFeI4 (CsTlI4 type, spgr P21/c; a = 7.281(1) Å; b = 17.960(3) Å; c = 8.248(2) Å; β = 107.35(15)°) is built up by tetrahedral [FeI4]? ions and CsI11 polyhedra. The crystal structure of the orthorhombic (n-C5H11)4NFeI4 (spgr Pnna; a = 20.143(4) Å; b = 12.683(3) Å; c = 12.577(3) Å) contains tetrahedral [(n-C5H11)4N]+ ions and [FeI4]? ions, respectively.  相似文献   

19.
Anionic iron(0) tetracarbonyl with terminal phenyltellurolate ligand PhTe?, [PhTeFe(CO)4]?, has been synthesized and characterized. The title compound was obtained by addition of (PhTe)2 to [PPN][HFe(CO)4] THF solution dropwise. [PPN][PhTeFe(CO)4] crystallizes in the monoclinic space group C c, with a = 16.119(4) Å, b = 13.141(3) Å, c = 19.880(8) Å, β = 93.04(3)°, V = 4205(2) Å3, and Z = 4. The [PhTeFe(CO)4]? anion is a trigonal-bipyramidal complex in which the phenyltellurolate ligand occupies an axial position with Fe-Te bond length 2.630(5) Å and the Fe-Te-C(Ph) angle is 103.4(5)°. The neutral iron(0)-telluroether compound, (PhTeMe)Fe(CO)4, was prepared by alkylation of the [PhTeFe(CO)4]?. Protonation of [PhTeFe(CO)4]?and reaction of H2Fe(CO)4 and PhTe)2 ultimately lead to formation of the known dimer Fe2(μ-TePh)2(CO)6 and H2.  相似文献   

20.
Single crystals of two new modifications of [P(C6H5)4]2[Cu2I4] were obtained by reaction of granulated copper with iodine and [P(C6H5)4]I in dry acetone under nitrogen atmosphere. They crystallise monoclinically, space group P21/n (No. 14), a = 11.550(6), b = 7.236(2), c = 27.232(13) Å, β = 98.13(3)°, V = 2253(2) Å3, and Z = 2 ([P(C6H5)4]2[Cu2I4]-C), and space group Cc (No. 9), a = 17.133(5), b = 15.941(5), c = 18.762 (6) Å, β = 114.02(1)°, V = 4681(3) Å3, and Z = 4 ([P(C6H5)4]2[Cu2I4]-D), respectively. In these compounds the [CuI2]? anions form dimers di-μ-iodo-diiodocuprate(I), which are either planar ( C ) or folded ( D ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号