首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of [(me3Si)2P]2PLi with Chlorophosphanes [(me3Si)2P]2PLi 1 with (C6H5)2PCl yields only a small amount of the expected [(me3Si)2P]2P–P(C6H5)2 2 ; the main products are (me3Si)2P–P(C6H5)2 3 and (C6H5)2P–P(C6H5)2 4 besides some (me3Si)3P 5 and (C6H5)2P–Sime3 6. 3 and 4 result from the metallation of (C6H5)2PCl by 1 t-buPCl2 and 1 form the P3-ring (me3Si)(me3C)P3[P(Sime3)2] 9 as main product besides some [(me3Si)2P]2P–Sime3 7 and 5. 9 is afforded by elimination of me3SiCl, from the initially formed unstable [(me3Si)2P]2P–P(Cl)Cme3 10 . Similarly 1 and PCl3 yield mainly the P3-ring (me3Si)(Cl)P3 · [P(Sime3)2] 11 due to elimination of me3SiCl from [(me3Si)2P]2P–PCl2.  相似文献   

2.
Formation and Reaction of P-functional Phosphanes The reaction of (me3Si)2PLi · 2 THF a (me = CH3) with PCl3 b at ?78°C via the intermediate (me3Si)2P? PCl2 1 yields [(me3Si)2P]2PCl 2 and [(me3Si)2P]2P? P(Sime3)2 3 . By addition of me3CLi c to the reaction mixture of a and b (molar ratio a:b:c (molar ratio a:b:c = 1:1:1) at ?60°C, 2 is formed as a main product, which reacts on to yield [(me3Si)2P]2PH 4 (white crystals, mp = 73°C). By reactions of a:b:c in a molar ratio of 1:1:2 the cyclotetraphosphane (me3C)3 (me3Si)P4 7 is accessible, and the additional formation of (me3Si)2PLi · 2 THF, (me3Si)3P and Li3P7 · 3 THF 13 was detected. Warming (me3Si)2P? PCl(Cme3) 5 to 20°C produces cis- and trans-cyclotetraphosphanes (me3Si)2(me3C)2P4. By running the reaction of a and b at ?78°C and adding me3CLi only after 24 h, additionally to (me3Si)2P? PH Cme3) and (me3Si)3P also (me3Si)2P? P(Cme3)? P(Cme3)? P (Sime3)2 is obtained, which is formed by metallation of (me3Si)2P? PCl(Cme3) with me3CLi and by further reaction of the intermediate (me3Si)2P? PLi(Cme3) with (me3Si)2P? PCl(Cme3). The reaction of (me3Si3)P with PCl3 at ?78°C only yields (me3Si)2P? PCl2 1 and me3SiCl. On addition of me3CLi (?78°C, molar ratio = 1:1:1) preferrably 2 and (me3Si)2P? PCl(Cme3) are formed, whereas after warming the mixture to 20°C, 4 and (me3Si)2P? PH(Cme3) are found to be the main products. These reactions are induced by the cleavage of 1 by means of me3CLi, and by the formation of (me3Si)2PLi and me3C? PCl2.  相似文献   

3.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. X. The Influence of the Formation of Complex Compounds on the Reactivity of [(Me3Si)2P]2PH Whereas [(Me3Si)2P]2PH 1 by BuLi is attacked at the PH group to give [(Me3Si)2P]2PLi 2 , the related chromium carbonyl complex (Me3Si)PIV ? 2PIV(H) ? 3PIII(Si? Me3)2 · Cr(CO)4 3 with BuLi yields Li(Me3Si)1PIV ? 2PIV(H) ? 3PIII(SiMe3)2 · Cr(CO)4 4 by cleaving a Si? P bond at the chromium substituted 1P atom. Dissolved in ether, 4 is stable for a longer time, while under comparable conditions 2 forms Li3P7 which is not obtained from 4 . MeOH in 3 cleaves selectively the Me3Si groups from the complex substituted P atom yielding (Me3Si)(H)1PIV ? 2PIV(H) ? 3PIII(SiMe3)2 · Cr(CO)4 5 and HPIV ? 2PIV(H) ? 3PIII(SiMe3)2Cr(CO)4 6. 5 and 6 seem to be stable in contrast to the uncoordinated triphosphanes which are not known.  相似文献   

4.
The Formation of Disilylphosphino-Element Compounds of C, Si, P The reactions of (me3Si)2PLi · OR2 a (OR2 = 1 monoglyme or 2 THF; me = CH3) with CH3Cl, CH2Cl2, ClCH2CH2Cl and ClCH2? C6H5 give the compounds (me3Si)2Pme, (me3Si)2P? CH2? P(Sime3)2, (me3Si)2P? CH2CH2Cl, (me3Si)2P? CH2CH2? P(Sime3)2 and (me3Si)2P? CH2C6H5 respectively. In the same manner a reacts with me2SiCl2 in a molar ratio 1:1 to (me3Si)2P? Sime2Cl and in a molar ratio 2:1 to (me3Si)2P? Sime2? P(Sime3)2 b . The compound b decomposes to [me3SiP? Sime2]2 and (me3Si)3P at 220°C. In the reactions of a with ClP(C6H5)2 and ClPme2 the compounds (me3Si)2P? P(C6H5)2 and (me3Si)2P? Pme2, respectively, are obtained. a reacts with HgCl2 to (me3Si)2P? P(Sime3)2. (me3Si)3P can be cleaved with ClP(C6H5)2 and ClPme2 yielding (me3Si)2P? P(C6H5)2 and (me3Si)2P? Pme2, respectively. The 1H- and 31P-n.m.r. and mass spectroscopic data are reported.  相似文献   

5.
Investigations Concerning the Metallation of the Cyclotetraphosphanes P4(Cme3)3(Sime3), P4(Cme3)2(Sime3)2, and P4(Sime3)4 The reaction of white phosphorus with LiCme3 and me3SiCl yields P4(Sime3)(Cme3)3 1 . With n-buLi this crystalline cyclotetraphosphane forms the crystalline LiP4(Cme3)3. In the same manner, n-buLi, with trans-P4(Sime3)2(Cme3)2 2 to yields LiP4(Sime3)(Cme3)2, which in contrast to LiP4(Cme3)3 decomposes within a few hours yielding P(Sime3)2n-bu 6 , P(Sime3)3 8 , LiP(Sime3)2 9 and also the cyclic compounds P4(Sime3)(Cme3)3 10 , LiP4(Cme3)3 11 and LiP3(Cme3)2 12 . The composition of the product mixture depends on the molar ratio of 2 to LiC4H9. At a molar ratio of 1:1 11 and 12 are not jet observed. At molar ratios of 1:1.5 and 1:2 P(Sime3)3 is not found. The amount of 11 and 12 grows with increasing concentration of n-buLi. On addition of n-buLi the solution of P4(Sime3)4 immediately turns red. Li3P7 and Li2P7(Sime3) (among others) are formed so fast that the first intermediates in the lithiation sequence so far could not be elucidated. These results demonstrate clearly that replacement of two me3Si groups in P4(Sime3)4 by two me3C groups excludes the rearrangement of LiP4(Sime3)(Cme3)2 to a P7-molecule.  相似文献   

6.
Monolithium Silylphosphanes We report a convenient method for preparation of (me3Si)2PLi-etherates (me = CH3) using the cleavage of (me3Si)3P with butyllithium. If monoglyme is used as a solvent the reaction occurs at ?40°C according to equation If other ethers are applied the crystalline adducts (me3Si)2PLi · 1 triglyme, (me3Si)2PLi · 2 THF are formed. In the presence of less polar solvents e.g. dioxane or diethylether the cleavage reaction occurs on heating only; in nonpolar solvents e.g. toluene or pentane no cleavage is observed. In monoglyme (me3Si)3P undergoes a cleavage reaction at ?40°C with butyllithium, at ?20°C with methyllithium, with LiPHme and LiP(C2H5)2 at 0°C forming (me3Si)2PLi · 1 monoglyme. The reaction of (me3Si)2PH with butyllithium in cyclopentane gives (me3Si)2PLi which is free of any coordinated ether. (me3Si)2PH and meLi react at ?40°C in (C2H5)2O as a solvent yieling (me3Si)2PLi · 0.5 (C2H5)2O.  相似文献   

7.
Formation and Properties of Li2P7R (R = Si(CH3)3, CH3, C(CH3)3) The reaction of P7(Sime3)3 with Li3P7 in the molar ratio of 2:1 yields LiP7(Sime3)2, and in the molar ratio of 1:2 Li2P7Sime3 is formed. Li2P7me and Li2P7Cme3 (me = CH3) are obtained by reaction of white phosphorus with Lime, or LiCme3, respectively [2]. The compounds Li2P7R (R = Sime3, Cme3, me) show typical valence tautomerism, as established by 31P-n.m.r. spectroscopy at various temperatures. Also LiP(Sime3)2 transforms P7(Sime3)3 to yield Li2P7Sime3 but in this reaction considerable cleavage of P? P bonds occurs, too.  相似文献   

8.
The Structures of the Heptahetero-Nortricyclenes P7(Sime3)3 and P4(Sime2)3 Tris(trimethylsilyl)heptaphospha-nortricyclene P7(Sime3)3 1 and Hexamethyl-trisila-tetraphospha-nortricyclene P4Si3me6 2 are structural analogons to the hetero-nortricyclenes P and P4S3. 1 crystallizes in the space group P21 with a = 965.7 pm, b = 1746.5 pm, c = 693.3 pm, β = 99.61° and Z = 2 formula units. In the P7 system tge P? P bond lengths differ functionally, namely 221.4 pm in the three-membered ring, 219.2 pm at the ring atoms and 217.9 pm at the bridgehead atom. The P? Si and Si? C bond lengths are 228.8 pm and 187.8 pm respectively. 2 crystallizes in the space group R3 with aR = 1129.3 pm, αR = 50.01° (hexagonal axes: a = 954.7 pm, c = 2956.9 pm) and Z = 2 formula units. In the P4Si3 systems the bond lengths are P? P = 220.2 pm, P? Si = 228.3 pm and 224.7 pm (to the bridgehead atom). The Si? C bond lengths are 187.3 pm. The structures are discussed with related compounds.  相似文献   

9.
me3Si? CCl2?Sime2Cl (me ? CH3) läßt sich mit n-buLi (bu ? C4H9) bei–100°C (Lösungsmittel THF/Äther) in me3Si? CCl(Li)? Sime2Cl a überführen. das mit meJ me3Si? CClme? Sime2Cl bildet. Wird a in Abwesenheit eines Abfangreagenzes langsam erwärmt, so bildet sich unter Abspaltung von LiCl (Cl aus der SiCl-Gruppe) über eine reaktive Zwischenstufe des Bicyclobutans b . Die Struktur von b ist durch NMR-Untersuchung, Röntgenstrukturanalyse und Abbaureaktionen gesichert. Mit HBr bzw. CH3OH werden die Si? C-Bindungen der Dreiringe in b gespalten, so daß sich me3Si? CH2? C(Sime2X)2Sime3 (X ? Br, OCH3) bildet. Formation of Organosilicon Compounds. 85. Formation, Reactions, and Structure of 1,1,3,3-Tetramethyl-2,4-bis(trimethylsilyl)-1,3-disilabicyclo[1, 1, 0]butane me3Si? CCl2? Sime2Cl (me ? CH3) with n-buLi (bu ? C4H9) at –100°C (solvent: THF/ether) yields me3Si? CCl(Li)? Sime2Cl a , which forms me3Si? CClme? Sime2Cl with meI. By warming a slowly in absence of any trapping reagent the bicyclobutane b is obtained via a reactive intermediate under elimination of LiCl (Cl from the SiCl group). The structure of b is established by nmr investigations, X-ray structure determination and chemical derivatisation.  相似文献   

10.
The Crystal Structure of Diethylaluminium Hypersilanide [(C2H5)2Al–Si{Si(CH3)3}3]2 [Et2Al–Hsi]2 (Et = C2H5, Hsi = –Si(SiMe3)3), prepared from [Et2AlCl]2 and equimolar amounts of base‐free Li–Hsi in n‐pentane, crystallizes in the triclinic space group P 1 with two independent dimers per unit cell. One of these molecules is disordered. The dimers consist of planar Al2C2‐skeletons with Al–C–Al bridging bonds of 212,9(2) and 221,2(2) pm, respectively, and with intramolecular C–H…Al contacts of 202(2) pm.  相似文献   

11.
Investigations on Lithiation and Substitution of HP[Si(t-Bu)2]2PH HP[Si(t-Bu)2]2PH 1 is monolithiated by reaction with LiPH2 · DME or LiBu in toluene. The crystalline compound HP[Si(t-Bu)2]2PLi · 2 DME 2 can be isolated in DME. Reaction of 2 with Me2SiCl2 leads to HP[Si(t-Bu)2]2P? SiMe2Cl 4 , ClMe2Si? P[Si(t-Bu)2]2P? SiMe2Cl 5 , HP[Si(t-Bu)2]2P? SiMe2? P[Si(t-Bu)2] 2PH 6 . Isomerization by Li/H migration between 4 and 2 leads to the formation of 5 . Reaction of Li(t-Bu) with 1 or 2 yields LiP[Si(t-Bu)2]2PLi 3 by further lithiation. 3 could not be obtained purely, only in a mixture with 2 . These compounds favourably generate with t-BuPCl2 in hexane Cl(t-Bu)P? P[Si(t-Bu)2]2P? P(t-Bu)Cl 9 , in THF HP[Si(t-Bu)2]2P? P(t-Bu)? P[Si(t-Bu)2]2 PH 12 (main product), 9 , H(t-Bu)P? P[Si(t-Bu)2]2P? P(t-Bu)Cl 10 , H(t-Bu)P? P[Si(t-Bu)2]2P? P(t-Bu)H 11 as well as HP[Si(t-Bu)2]2P? P(t-Bu)H 13 and HP[Si(t-Bu)2]2P? P(t-Bu)2 14 .  相似文献   

12.
The Phosphides LiR2P7, Li2RP7 (R = Me3Si, Et, iPr, iBu) as well as Mixed Alkylated and Silylated Heptaphosphanes(3) Formation and properties of LiR2P7 and Li2PR7 (R = Me3Si, Et, iPr, iBu) and their reactions with Me3SiCl or alkylhalides yielding mixed alkylated and silylated heptaphosphanes(3) are reported. Reactions of (Me3Si)3P7 and Li3P7. 3 DME produce mixtures of Li(Me3Si)3P7, Li2(Me3Si)P7 and Li3P7 from which pure Li(Me3Si)2P7 (s, as) can be isolated by means of an extraction with toluene. Similarly, the isomers of LiR2P7 (R = Et, iPr, iBu) can be extracted from the mixtures obtained by reacting Li3P7 with alkylbromides. The (s) isomers of LiR2P7 in solution at about 20°C from the (as) isomers whereas the latter up to 70°C do not show any inversion. The (as) lithiumdialkylphosphides can be obtained as ether free products (red brown powder, isoluble in toluene, soluble in THF) by repeated addition of toluene and removal of the solvents; the (s) isomers decompose during the procure. In reactions of LiEt2P7. THF (s, as) in toluene at ?30°C with EtBr only the (s) isomer is substituted and gives Et3P7 (s), however on warming to 20°C by inversion of Pe a ratio of (s) : (as( = 1 : 3 is obtained. With Li(iBu)2P7, (s) reaction begins above ?20°C the giving both the (s) and the (as) isomer. (iBu)3P7 (s) is the prefered isomer at higher temperatures. Li(Me3Si)2P7 (s, as) with Me3SiCl exclusively yields (Me3Si)3P7 (s). Li2RP7 (R = alkyl, Me3SI) is not available. From mixtures with LiR2P7 and Li3P7, it can be isolated only after repeated cumbersome extraction of LiR2P7 as was shown with Li2(iPr)P7 as an example. Ether free LiEt2P7(s, as) with Me3SiCl exclusively gives Et2(Me3Si)P7 (s, as) whereas LiEt2P7 ? THF due to its THF content does not. Similarly, ether free Li(iBu)2P7 yields (iBu)2(Me3Si)P7 (s, as). The compounds R(Me3Si)2P7 (R = alkyl) cannot be selectively prepared neither starting from Li2RP7 with Me3SiCI) nor from Li(Me3Si)2P7 with RX. Such, the reaction of Li(Me3Si)2P7 ? THF with EtBr in toluene at ?78°C yield a mixture of Et(Me3Si)2P7 (42%), Et2(Me3Si)P7 (27010), (Me3Si)3P7 (29%) and Et3P7 (2%). (Me3Si)3P7 with MeI in a molar ratio of 1 : 1 at 70°C quantitatively produces Me(Me3Si)2P7 whereas already using a molar ratio of 1 : 2 also Me3P7 is obtained. With EtBr mixtures of Et(Me3Si)2P7 and Et3P7 are formed. iBuBr gives iBu3P7, but tBuBr does not yield any tBu3P7.  相似文献   

13.
Transition Metal Phosphido Complexes. XV. (DRPE)Ni-Complexes with PH-Containing, η2-Coordinated Diphosphene Ligands and the Diphosphorus Complexes [(DRPE)Ni]2P2 The complexes (DRPE)NiCl2 1 (DRPE = R2PCH2CH2PR2; R = Et: DEPE a ; R = Cy: DCPE b ; R = Ph: DPPE c ) react with the silylphosphines (Me3Si)3P, (Me3Si)2PH, Me3SiPH2 and [(Me3Si)2P]2 to form the diphosphorus complexes [(DRPE)Ni]2P2 3a–c and the nickel(0) complexes (DRPE)2Ni 4a–c . In the reaction of 1b with Me3SiPH2 the P2H2 complex (DCPE)Ni[η2-(PH)2] 5b can be isolated at low temperature as an intermediate. Cleaving the Si? P bonds in (DRPE)Ni[η2-(PSiMe3)2] 2a, 2b with CH3OH gives also the P2 complexes 3a, 3b . Intermediates containing HP=PSiMe3 and P2H2 as ligands can be detected nmr spectroscopically. Reacting 1a–c with (Me3Si)2PP(SiMe3)CMe3 the complexes (DRPE)Ni(η2-Me3SiP?PCMe3) 7a–c containing asymmetric diphosphene ligands can be obtained. 7a reacts with CH3OH yielding the P2 complex 3a directly, while 7b with CH3OH first gives (DCPE)Ni(η2-HP?PCMe3) 8b . In solution 8b can be transformed into 3b upon heating to 80°C. N.m.r. and mass spectral data are reported.  相似文献   

14.
Hexamethyl-trisila-tetraphospha-nortricyclene, P4 Sime23 Reaction of white phosphorus with Na/K alloy and subsequent treatment with me2SiCl2 (me = CH3) yields crystalline P4(Sime2)3 (m. p. 159–160°C) along with polymeric silylphosphanes. The structure is derived from 31P-n.m.r.and mass spectra and turns out to be analogous to P4S3.  相似文献   

15.
tBu2P–PLi–PtBu2·2THF reacts with [cis‐(Et3P)2MCl2] (M = Ni, Pd) yielding [(1,2‐η‐tBu2P=P–PtBu2)Ni(PEt3)Cl] and [(1,2‐η‐tBu2P=P–PtBu2)Pd(PEt3)Cl], respectively. tBu2P– PLi–PtBu2 undergoes an oxidation process and the tBu2P–P–PtBu2 ligand adopts in the products the structure of a side‐on bonded 1,1‐di‐tert‐butyl‐2‐(di‐tert‐butylphosphino)diphosphenium cation with a short P–P bond. Surprisingly, the reaction of tBu2P–PLi–PtBu2·2THF with [cis‐(Et3P)2PtCl2] does not yield [(1,2‐η‐tBu2P=P–PtBu2)Pt(PEt3)Cl].  相似文献   

16.
Extension of the Chain Length of P2(SiMe3)4 by Reaction with LiBu The first steps of the reaction of P2(SiMe3)4 1 with LiBu in THF, which finally yields Li3P7 among other P-rich phosphides while P(SiMe3)3 and LiP(SiMe3)2 are simultaneously split off, were investigated by means of 31P-NMR spectroscopy. At ?20°C first of all one Si? P bond is cleaved generating Li(Me3Si)P? P(SiMe3)2 2 as well as BuSiMe3. Subsequently 2 forms Li(Me3Si)P? P(SiMe3)? P(SiMe3)2 5 and LiP(SiMe3)2 4 in equimolar ratios. This clearly demonstrates that both compounds are generated in one single reaction step. This behaviour is caused by the different basicity of the respective P-atoms in 2 , which necessarily results in a multicentered mechanism.  相似文献   

17.
Formation of Cyclic Silylphosphanes. Reaction of Li-Phosphides with R2SiCl2 (R? Me, Et, t-Bu) The reaction of Me2SiCl2 with Li-phosphides (mixture of LiPH2, Li2PH) leads to the formation of Me2Si(PH2)Cl 1 , Me2Si(PH2)2 2 , H2P? SiMe2? PH? SiMe2Cl 3 , (H2P? SiMe2)2PH 4 , (HP? SiMe2)3 6 , 5 , 7 , 8 , 9 , 10 , 40 . Excess of phosphides in Et2O – as well as excess of LiPH2 – favourably forms 10 . Li2PH (virtually free of Li3P and LiPH2) is obtained by reaction of LiPH2 · DME with LiBu; Li3P by reaction of PH3 with LiBu in toluene. Isomerization by Li/H migration determines the course of reaction of the PH-bearing compounds with Li-phosphides. With Me2SiCl2 Li3P mainly generates compound 10 . The reaction of the Li-phosphides with Et2SiCl2 mainly leads to (HP? SiEt2)3 18 and (HP? SiEt2)2 17 as well as to Et2Si(PH2)Cl 11 , Et2Si(PH2)2 12 , (ClEt2Si)2PH 13 , H2P? SiEt2? PH? SiEt2Cl 14 , (H2P? SiEt2)2PH 15 and 16 . In the reaction with LiPH2 · DME the same compounds are obtained and isomerization by Li/H migration (formation of PH3) already begins at ?70°C. In toluene ClEt2Si? P(SiEt2)2P? SiEt2Cl is additionally formed. Derivatives of 9, 10, 40 are not observed. The reaction of (t-Bu)2SiCl2 with LiPH2 leads to HP[Si(t-Bu)2]2PH 20 (yield 76%) and formation of PH3, the reaction with Li2PH to 20 (54%) besides HP[Si(t-Bu)2]2PLi 21 .  相似文献   

18.
Preparation, Structures, and Properties of Tris-hexamethyl-trisila-tetraphospha-nortricyclene-bis-chromiumtricarbonyl [P4(Sime2)3]3[Cr(CO)3]2 Hexamethyl-trisila-tetraphospha-nortricyclene P4(Sime2)3 1 reacts with C6H6Cr(CO)3 or (CHT)Cr(CO)3 (CHT ? Cycloheptatriene) under formation of [P4(Sime2)3]3[Cr(CO)3]2 3 (red crystals), in which each of the Cr atoms is attached to one P atom of a P3 ring of the three molecules 1 . 3 can also be prepared by heating a solution of P4(Sime2)3Cr(CO)5 in benzene or THF up to 120–1307deg;C. The compound 3 crystallizes in an orthorhombic and a hexagonal form, the latter being stabilized by one mole toluene. As revealed by single crystal investigations, the symmetry ¯6, distances and angles are nearly unchanged. The o-form corresponds to a face centered cubic packing of the molecules, whereas the h-form is hexagonal close packed.  相似文献   

19.
Crystal Structure of Dodecamethyl-hexasila-tetraphospha-adamantane (Sime2)6P4 Dodecamethyl-hexasila-tetraphospha-adamantane (Sime2)6P4 crystallizes in the cubic space group I 4 3m with a = 1081.7 pm and Z = 2 formula units. The bond lengths are P? Si = 224.9 pm, C? Si = 186.4 pm and C? H = 87 pm. The bond angles at the P-atoms are 104.4° and at the Si-atoms 118.8°. – The structure of the isotypic compound (Geme2)6P4 was refined.  相似文献   

20.
Formation of organosilicon compounds. 84. Synthesis and thermal rearrangement of some substituted linear and cyclic silanes In part IR we report on the synthesis of substituted silanes, and in part II on their thermal rearrangement. I: me3i--Sime3(me = CH3) is formed by dropwise addition of THF to a suspension of Li powder in me3SiCl; yield ~ 80%. The mixture me3Si--Sime2Cl, me3SiCl, Li powder and THF reacts analogously to form me2Si(Sime3)2; yield 80%. By the same type of reaction the following compounds are obtained: compound 1 from Brme2Si? CH2? Sime2Br, 1 from Brme2Si? CH2? Sime2Br, 2 from Brme2Si? Sime2? CH2? Sime2Br 16 and 3 from Bret2Si? CH2? CH2? Siet2Br (et = C2H5). 2 decomposes during its isolation from THF. 16 is formed from phme2Si? Sime2? CH2? Sime2ph 17 (ph = C6H5) by reaction with HBr, 17 either from phme2SiLi and Clme2SiCH2Cl or from phme2Si? Sime2Br and LiCH2? Sime2ph. II: me2Si(Sime3)2 rearranges at 440 °C (56 h) with insertion of the CH2 group (Si? H formation) into the Si? Si bond and the formation of me3Si? Sime2? CH2? Sime2H, me2HSi? CH2? Sime2? CH2? SiHme2, and me3Si? CH2? Sime? CH2? Sime2H. 1 reacts analogously. Methylated halogenated disilanes like Brme2Si? Sime2Br react with separation of: Sime2 and its insertion into the Si-halogen bond to form trisilanes. Different from both are the phenylated derivatives, though phme2Si? Sime2ph still forms phme2Si? Sime2? Sime2ph. 3 reacts with separation of C2H4, formation of the Si? H group and insertion of C2H4 into the Si? Si bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号