首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal Complexes of Phosphinic Acids. XVII. Investigations on the Oligomerisation of NiII and CoII Complexes of Bifunctional Dithiophosphinic Acids Alkali or ammonium salts of bifunctional dithiophosphinic acids react with Ni2+ or Co2+ to give complexes [S2P(R)? (CH2)n? (R)PS2M]m or x (R = 4-methoxyphenyl; M = Ni2+, Co2+; n = 4? 10) some of which are soluble in organic solvents and of low molecular weight (m), while others are insoluble (x). According to magnetic and spectroscopic measurements all of them contain planar NiS4 or tetrahedral CoS4 chromophors. While the insoluble compounds are regarded as coordination polymers, it is shown by osmometric measurements and by 31P{1H} spectroscopy, that there exists the equilibrium monomers (ansa type) ? oligomers in solutions of the soluble complexes. The influence of n on the solubility and the equilibrium is discussed. The association can be explained by simple statistic considerations.  相似文献   

2.
Aminomethylation of Phosphoro-, Phosphono-, Phosphinoamidoates and -amidothioates Dialkylphosphoroamidates, alkyl-phosphonoamidates and phosphonoamidothioates react with C2H5O? CH2? NR2 and HCOH/HNR2, respectively, as like as a N-aminomethylation forming the corresponding derivatives of the general formula R2P(X)? NR′? CH2? NR″2? R = alkoxy, alkyl, aryl; R′ = H, alkyl; X = O, S; R″ = alkyl, cycloalkyl —. Under the same conditions phosphonodiamidoates and phosphonodiamidothioates yield RP(X)-[NR′? CH2? NR″2]2 or RP(X)? NHR′? (NR′? CH2? NR″2) only. These compounds are not formed by interactions of RP(X)(NR′? CH2OH)2 with sec. amines. The aminomethylation of (C6H5)2P(S)NH2 gives unexceptional [(C6H5)2P(S)]2N? CH2? NR′2. The i.r. and 1H-n.m.r. data of the prepared compounds, which can't be distilled mostly, are discussed.  相似文献   

3.
The solid-state thermal decomposition of the dinuclear pivalate complexes LM(μ-OOCR)4ML, both those synthesized earlier (M = MnII, FeII, or CoII; L = 2,6-(NH2)2C5H3N)) and new complexes (M = CuII; L = 2,6-(NH2)2C5H3N or (2-NH2)(6-CH3)C5H3N), was studied by differential scanning calorimetry and thermogravimetry. The decomposition of the CoII complexes is accompanied by the aggregation to form the volatile octanuclear complex Co84-O)2n-OOCCMe3)12 (n = 2 or 3), whereas the thermolysis of the MnII, FeII, and CuII complexes is destructive, the phase composition of the decomposition products being substantially dependent on the nature of metal and the α substituent R in the apical organic ligand.  相似文献   

4.
The electron impact mass spectra of eight polynuclear beryllium complexes Be4O(RCO2)6 (R?H, CH3, C2H5) and Be4O(RCO2)5OR′ (R?CH3, R′?H, CH3, C2H5, C3H7; R?C2H5, R′?C2H5) are reported. The major fragmentations involve the elimination of (RCO)2O (RCOOR′) or Be(RCO2)2 (Be(RCO2)OR′) from the ions [M? L]+ and of {(R? H)CO}, (R′? H), H2O and BeO from the lighter ions. The fragmentation patterns are practically independent of the organic groups present and can be rationalized by stereochemical considerations.  相似文献   

5.
On Chalcogenolates. 139. Studies on Dialkyl Esters of Chalcogenocarbonic Acids. 2. O,Se- and S, Se-Dialkyl Monothiomonoselenocarbonates The hitherto unknown esters RSe? CS? OR′, where R = C2H5, nC3H7 and R′ = C2H5, nC3H7, are formed by reaction of NaSeR with Cl? CS? OR′ and of RSe? CS? Cl with HOR′. At the first time, the esters RSe? CO? SR′ with R = R′ = C2H5, nC3H7 have been prepared by reaction between NaSeR and Cl? CO? SR′. The compounds have been characterized by means of diverse spectroscopic methods.  相似文献   

6.
The title complexes, [M(C5O5)(C12H8N2)2], with M = CoII, NiII and CuII, all lie across twofold rotation axes, around which two 1,10‐phenanthroline ligands are arranged in a chiral propeller manner. The CoII and NiII complexes are isostructural, with octa­hedral coordination geometry, while the local geometry of the CuII complex is severely distorted from octa­hedral.  相似文献   

7.
On Chalcogenolates. 85. Studies on Hemiesters of Trithiocarbonic Acid 3. Vibrational Spectra of Alkyl Thioxanthic Acids and Hydrogen Bondings in the Free Acids The IR spectra of alkyl thioxanthic acids RS? CS(SH) with R = CH3, C2H5, nC3H7, iC3H7, nC4H9, sC4H9, tC4H9, and CH3S? CS(SD) as well as the Raman spectrum of the Compound with R = CH3 have been assigned. The formation of hydrogen bondings in the free acids has been studied by means of i.r. spectra, 1H-n.m.r. spectra, and electron absorption spectra. The energies of the hydrogen bondings have been calculated.  相似文献   

8.
The scaffold geometries, stability and magnetic features of the (pyridine‐2‐yl)methanolate (L) supported wheel‐shaped transition‐metal complexes with compositions [M6L12] ( 1 ), [Na?(ML2)6]+ ( 2 ), and [M′?(ML2)6]2+ ( 3 ), in which M=CoII, NiII, CuII, and ZnII were investigated with density functional theory (DFT). The goals of this study are manifold: 1) To advance understanding of the magnetism in the synthesized compounds [Na?(ML2)6]+ and [M′?(ML2)6]2+ that were described in Angew. Chem. Int. Ed.­ 2010 , 49, 4443 ( I ‐{Na?Ni6}, I ‐{Ni′?Ni6}) and Dalton Trans.­ 2011 , 40, 10526 ( II ‐{Na?Co6}, II ‐{Co′?Co6}); 2) To disclose how the structural, electronic, and magnetic characteristics of 1 , 2 , and 3 change upon varying MII from d7 (Co2+) to d10 (Zn2+); 3) To estimate the influence of the Na+ and M′2+ ions (XQ+) occupying the central voids of 2 and 3 on the external and internal magnetic coupling interactions in these spin structures; 4) To assess the relative structural and electrochemical stabilities of 1 , 2 , and 3 . In particular, we focus here on the net spin polarization, the determination of the strength and the sign of the exchange coupling energies, the rationalization of the nature of the magnetic coupling, and the ground‐state structures of 1 , 2 , and 3 . Our study combines the broken symmetry DFT approach and the model Hamiltonian methodology implemented in the computational framework CONDON 2.0 for the modeling of molecular spin structures, to interpret magnetic susceptibility measurements of I ‐{Na?Ni6} and I ‐{Ni′?Ni6}. We illustrate that whereas the structures, stability and magnetism of 1 , 2 , and 3 are indeed influenced by the nature of 3d transition‐metals in the {M6} rims, the XQ+ ions in the inner cavities of 2 and 3 impact these properties to an even larger degree. As exemplified by I ‐{Ni′?Ni6}, such heptanuclear complexes exhibit ground‐state multiplets that cannot be described by simplistic model of spin‐up and spin‐down metal centers. Furthermore, we assess how future low‐temperature susceptibility measurements at high magnetic fields can augment the investigation of compound 3 with M=Co, Ni.  相似文献   

9.
The reactions of the oxalate complexes [M3Q7(C2O4)3]2− (M = Mo or W; Q = S or Se) with MnII, CoII, NiII, and CuII aqua and ethylenediamine complexes in aqueous and aqueous ethanolic solutions were studied. The previously unknown heterometallic complexes [Mo3Se7(C2O4)3Ni(H2O)5]·3.5H2O (1) and K3{[Cu(en)2H2O]([Mo3S7(ox)3]2Br)}·5.5H2O (2) were synthesized. In these complexes, the oxalate clusters serve as monodentate ligands. The K(H2en)2[W3S7(C2O4)3]2Br·4H2O salt (3) was isolated from solutions containing CoII, NiII, or CuII aqua complexes and ethylenediamine. The reaction of [Mo3Se7(C2O4)3]2− with HBr produced the bromide complex [Mo3Se7Br6]2−, which was isolated as (Bu4N)2[Mo3Se7Br6] (4). Complexes 1–3 were characterized by X-ray diffraction, IR spectra, and elemental analysis. The formation of 4 was detected by electrospray mass spectrometry. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1645–1649, September, 2007.  相似文献   

10.
On Chalcogenolates. 140. Studies on Dialkyl Esters of Chalcogenocarbonic Acids. 3. S,Se-Dialkyl Dithiomonoselenocarbonates. Evidence for the Existence of Alkyl Selenoxanthates [S2C? SeR]? The esters RSe? CS? SR′ with R = R′ = C2H5, nC3H7 as well as with R = nC3H7 and R′ = C2H5 have been produced by three different methods. The compounds have been characterized by means of electron absorption, infrared, nuclear magnetic resonance (1H, 13C, and 77Se), and mass spectra. The unstable alkyl selenoxanthates M[S2C? SeR], where M = Na, K and R = C2H5, nC3H7, are formed by reaction of carbon disulfide with the corresponding alkane selenolate. Freshly prepared they react with alkyl iodides R′I to yield RSe? CS? SR′.  相似文献   

11.
Methods were developed for the synthesis of complexes of CoII, NiII, and CuII nitrates and chlorides with N-(1-phenylethylidene)-N-(4H-1,2,4-triazol-4-yl)amine (L1) and N′-(4H-1,2,4-triazol-4-yl)benzamidine (L2). The CoII and NiII complexes have a linear trinuclear structure. The CuII complexes are polynuclear. Both ligands are coordinated to the metal ions in a bidentate-bridging mode through the N(1) and N(2) atoms of the heterocycle. In all compounds, the coordination polyhedron can be described as a distorted octahedron. The molecular and crystal structure of the [Ni3(L1)6(EtOH)2(H2O)4](NO3)6·2EtOH·4H2O complex was established.  相似文献   

12.
The formation and structural aspects of some metal complexes of thiosalicylic acid (TSA) were studied. The μ‐bridging tetra‐coordinated Ru complex, [Ru(C6H4(CO2)(μ‐S)(H2O)]2 ( 1 ) was formed by hydrothermal reaction of TSA with RuCl3. The complexes [M(dtdb)(phen)(H2O)]n ( 2 – 4 ) (M = ZnII, CoII, NiII, dtdb = 2,2′‐dithiodibenzoate anion, phen = 1,10‐phenanthroline) were obtained by the slow diffusion technique and the in situ S–S bond formation was confirmed by elemental, spectral and X‐ray analysis. Reaction of TSA with CuCl2 and 2,2′‐bipyridine (bipy) under the slow diffusion technique yielded the dimer [Cu(tdb)(bipy)] ( 5 ) (tdb = thiodibenzoic acid), where the in situ generation of 2,2′‐thiodibenzoic acid was observed.  相似文献   

13.
On the Reaction of P4E3I2 (E = S, Se) with some Carboxylic Acids and Dithiocarbamic Acids By the reaction of α-P4E3I2 (E = S, Se) with carboxylic acids, dithiobenzoic acid or dithiocarbamic acids in the presence of triethylamin or with (C6H5)3SnR, or of β-P4E3I2 with tin-organic compounds α-P4E3(I)R, α(β)-P4E3R2 [R = ? OC(O)C6H5, ? OC(O)CH3, ? SC(S)NC5H10, ? SC(S)N(C2H5)2], α-P4S3(I)SC(S)C6H5, α-P4S3(SC(S)C6H5)2 and β-P4E3(I)R (R = ? OC(O)C6H5, ? OC(O)CH3) were prepared in solution and identified by 31P NMR spectroscopy. In addition α-P4S3(NC5H10)(SC(S)NC5H10) was detected. The β-isomers could be obtained also with lesser yields by the reaction with the dithiocarbamic acids, too. The substitution of the second iodine ligand in β-P4E3I2 resulted mainly in β-P4S3(Rexo)2 and by inversion of the configuration at a phosphorus atom, in β-P4E3RexoRendo. α-P4S3I2 reacted with methanol in CS2 to α-P4S3(OCH3)(SC(S)OCH3) and α-P4S3(SC(S)OCH3)2. The 31P NMR data of the compounds are discussed. The 31P NMR spectra of the α(β)-P4E3 dithiocarbamates indicate dynamic processes in the solution, e. g. α-P4S3(I)(SC(S)NR2) showed an intramolecular conversion, due to the anisobidentate dithiocarbamate ligand. This behaviour had not previously been noticed for compounds with a P4S3-skeleton.  相似文献   

14.
4′‐Cyanophenyl‐2,2′:6′,2′′‐terpyridine (cptpy) was employed as an N,N′,N′′‐tridentate ligand to synthesize the compounds bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(II) bis(tetrafluoridoborate) nitromethane solvate, [CoII(C22H14N4)2](BF4)2·CH3NO2, (I), and bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(III) tris(tetrafluoridoborate) nitromethane sesquisolvate, [CoIII(C22H14N4)2](BF4)3·1.5CH3NO2, (II). In both complexes, the cobalt ions occupy a distorted octahedral geometry with two cptpy ligands in a meridional configuration. A greater distortion from octahedral geometry is observed in (I), which indicates a different steric consequence of the constrained ligand bite on the CoII and CoIII ions. The crystal structure of (I) features an interlocked sheet motif, which differs from the one‐dimensional chain packing style present in (II). The lower dimensionality in (II) can be explained by the disturbance caused by the larger number of anions and solvent molecules involved in the crystal structure of (II). All atoms in (I) are on general positions, and the F atoms of one BF4 anion are disordered. In (II), one B atom is on an inversion center, necessitating disorder of the four attached F atoms, another B atom is on a twofold axis with ordered F atoms, and the C and N atoms of one nitromethane solvent molecule are on a twofold axis, causing disorder of the methyl H atoms. This relatively uncommon study of analogous CoII and CoIII complexes provides a better understanding of the effects of different oxidation states on coordination geometry and crystal packing.  相似文献   

15.
Summary 2-Aminoacetophenone-2-thenoylhydrazone, Haath, C4H3SC(O)NHN=C(Me)C6H4NH2-o, forms complexes with metal(II) salts of empirical compositions [VO(Haath)2SO4], [M(Haath)2Cl2] [M=CoII, NiII, CuII or ZnII] and [M(aath)2] [M=VIVO, CoII, NiII, CuII or ZnII] which have been characterized by elemental analyses, molar conductance, magnetic susceptibility, electronic, e.s.r., i.r. and n.m.r. (1H and13C) spectral studies. X-ray and electron diffraction patterns have been obtained in order to elucidate the structure of the CuII complexes. Photoacoustic spectra of powder NiII complexes have been recorded and interpreted in the light of u.v./vis. spectra.  相似文献   

16.
On Organophosphorus Compounds. XV. Preparation and Reactions of Trimethylsilyl Esters of Phosphinic Acids Trimethylsilylesters of Phosphinic acids R2P(X)YSi(CH3)3 (R ? CH3, C2H5, C3H7, t?C4H9, C6H5; X, Y ? O, S) were prepared by 7 different methods as in some cases easily hydrolysable but thermally remarkably stable compounds. The properties and some reactions of these substances are reported, their structures confirmed by IR? as well as 1H- and 31P-NMR-spectroscopy. Dimethylsilylen-bis(phosphinic acid esters) were obtained according to \documentclass{article}\pagestyle{empty}\begin{document}$ 2{\rm R}_{2} {\rm P(\rm X)\rm ONH}_{4} + {\rm R}_{\rm 2} {\rm SiCl}_{2} \to 2{\rm E NH}_{4} {\rm Cl + R}_{2} {\rm P(X) - O - SiR}_{2} - {\rm O - P(X)R}_{2} ({\rm R = CH}_{3};{\rm X = O,S}) $\end{document}.  相似文献   

17.
4,6-Diacetylresorcinol serves as a starting point for the generation of multidentate S/N/O or O/N/O symmetrical chelating agents by condensation with thiosemicarbazide or semicarbazide to yield the corresponding bis(thiosemicarbazone) H4L1 or bis(semicarbazone) H4L2, respectively. Reaction of H4L1 and H4L2 with M(NO3)2·6H2O (M?=?Co or Ni) afforded dimeric complexes for H4L1 and binuclear complexes for H4L2, revealing the tendency of S to form bridges. The dimeric cobalt complexes of H4L1 are very interesting in that they contain CoII/CoIII, side/side, low-spin octahedral coordinated CoIII-ions and high-spin square-planar coordinated CoII-ions. These complexes have the general formula [(H2L1)2Co2(H2O) (NO3)]·nEtOH. Arguments supporting these anomalous CoII/CoIII structures are based on a pronounced decrease in their magnetic moments, elemental and thermal analyses, visible and IR spectra, as well as their unreactivity towards organic bases such as 1,10-phenanthroline (phen), 2,2′-bipyridine (Bpy), N,N,N′,N′-tetramethylethylenediamine (Tmen) and 8-hydroxyquinoline (oxine, Ox). The dimeric octahedral NiII complex [(H2L1)2Ni2(H2O)4]·3H2O showed higher reactivity towards phen and Bpy and formed adducts; [(HL1)Ni2(B)(H2O)5] NO3 (B?=?phen or Bpy). In the presence of oxine, the dimeric brown paramagnetic octahedral complex [(H2L1)2Ni2(H2O)4]·3H2O was transformed to the dimeric brick-red diamagnetic square-planar complex [(H3L1)2Ni2](NO3)2. The latter showed dramatic behavior in its 1H NMR spectrum in DMSO-d 6, which was explained on the basis of H+-transfer. By contrast, the binuclear NiII–H4L2 complex (11) showed higher reactivity towards phen, Bpy and oxine. These reactions afforded mixed dimeric complexes having the molar ratio 2?:?2?:?1 (NiII?:?H4L2?:?base). The binuclear CoII–H4L2 complex afforded an adduct with phen and trinuclear complexes with Bpy and oxine. All complexes were found to be unreactive towards Tmen. Structural characterization was achieved by elemental and thermal analyses, spectral data (electronic, IR, mass and 1H NMR spectra) and conductivity and magnetic susceptibility measurements.  相似文献   

18.
Metal Complexes of Biologically Important Ligands. CLXVI Metal Complexes with Ferrocenylmethylcysteinate and 1,1′‐Ferrocenylbis‐(methylcysteinate) as Ligands A series of complexes of transition metal ions ( Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+ ) and of lanthanide ions ( La3+, Nd3+, Gd3+, Dy3+, Lu3+ ) with the anions of ferrocenylmethyl‐L‐cysteine [(C5H5)Fe(C5H4CH(R)SCH2CH(NH3+)CO2?] (L1) and with the dianions of 1,1′‐ferrocenylbis(methyl‐L‐cysteine) [Fe(C5H4CH(R)SCH2CH(NH3+) CO2?)2] (R = H, Me, Ph) (L2) as N,O,S‐donors were prepared. With the monocysteine ferrocene derivative L1 as ligands complexes [MIIL12] or [CrIIIL12]Cl type complexes are formed whereas the bis(cysteine) ligand L2 yields insoluble complexes of type [ML2]n, presumably as coordination polymers. The magnetic moments of [MnIIL2]n, [PrIIIL2]n(OH)n and [DyIIIL2]n(OH)n exhibit “normal” paramagnetism.  相似文献   

19.
Mononuclear copper(II) and trinuclear cobalt(II) complexes, namely [Cu(L1)]2 · CH2Cl2 and [{Co(L2)(EtOH)}2Co(H2O)] · EtOH {H2L1 = 4,6‐dichloro‐6′‐methyoxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol and H3L2 = 6‐ethyoxy‐6′‐hydroxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol}, were synthesized and characterized by elemental analyses, IR and UV/Vis spectroscopy, and single‐crystal X‐ray diffraction. In the CuII complex, the CuII atom is four‐coordinate, with a N2O2 coordination sphere, and has a slightly distorted square‐planar arrangement. Interestingly, the obtained trinuclear CoII complex is different from the common reported 2:3 (L:CoII) salamo‐type CoII complexes. Infinite 2D layer supramolecular structures are formed via abundant intermolecular hydrogen bonding and π ··· π stacking interactions in the CuII and CoII complexes.  相似文献   

20.
N-(2-Carboxyphenyl)iminodiacetic acid (H3A) and N-(2,5-dicarboxyphenyl)iminodiacetic acid (H4B) are tetradentate ligands and form complexes of the composition MA- and MB2? with MII ions. These compounds differ by the additional charge of the second carboxylic group only, which is fixed to the benzene nucleus and which is unable for coordination for steric reasons. Using an anisothermal calorimeter ΔH values for the formation of the complexes MA- and MB2? in aqueous solution have been measured at an ionic strength 0.1 m KNO3. From these data, and from the stability constants of the complexes, entropy changes ΔS have been calculated. In all cases investigated (Mm+ = H+, Mg2+, Ca2+, Sr2+, Co2+, Ni2+, Cu2+, Zn2+) the ΔH values are more negative for the complexes MAm-3 than for complexes MBm-4, whereas the ΔS values are greater for complexes MBm-4. Using a simple model for the molecules of the complexes MBm-4 and empirically determined dielectric constants of the medium between the central ions and the noncoordinated ionized carboxylic group, the electrostatic attraction between these charges was calculated. Basing on these results the influence of the noncoordinated carboxylic group on the central atom by the mesomeric and inductive effect is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号