首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of salicylaldehyde, 3-tert-butylsalicylaldehyde, and 3,5-di-tert-butylsalicylaldehyde with 1,4-diaminobutane, 1,6-diaminohexane, 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3′,5,5′-tetramethyldiphenylmethane, 4,4′-diamino-5,5′-dicyclopentyl-3,3′-dimethyldiphenylmethane, 4,4′-diamino-5,5′-dicyclohexyl-3,3′-dimethyldiphenylmethane, bis(4-aminophenyl) sulfone, o,o′- and p,p′-diaminodiphenyl ethers, 1,4-bis(4-aminophenoxy)benzene, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, and 4,4″-diamino-p-terphenyl gave a series of the corresponding Schiff bases which can be used as tetradentate ligands for the synthesis of titanium and zirconium complexes.  相似文献   

2.
Eight unsymmetrical N and/or O-bridged calixarene derivatives were obtained by 1 (naphthalene-2,7-diol), 2 (bis(4-hydroxyphenyl)methanone), 3 (4,4′-methylenedianiline), 4 (3,3′-methylenedianiline), 5 (4,4′-oxydianiline) and 6 (4,4′-(perfluoropropane-2,2-diyl)dianiline) reacting with fragment a (4,4′-bis(dichloro-s-triazinyloxy)propane-2,2-diyldibenzene) and b (N,N′-bis(dichloro-s-triazinyl)-4,4′-methylenedianiline) under very mild reaction conditions via efficient fragment coupling strategy. We also obtained the crystal structure of 1a (tetraoxocalix[2](propane-2,2-diyldibenzene,naphthalene)[2]triazine) which can form a molecular capsule by two dimers with C–H?N and C–H?O quadruple hydrogen bonds, and it has the encapsulation ability toward solvent molecules.  相似文献   

3.
Five kinds of polyimides were synthesized using five dianhydrides (including 2,2-bis[4-(3,4-dicarboxyphenoxy)- phenyl] propane dianhydride (BPADA),3,3',4,4'-diphenylsulfone-tetracarboxylic dianhydride (DSDA),4,4'- (hexafluoroisopropylidene)-diphthalic anhydride (6FDA),1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA), and 4,4'-oxydiphthlic dianhydride (ODPA)) and 2,2-bis[4-(4-aminophenoxy)phenyl] hexafluoropropane (BDAF) via the two- step method that included polyaddition to form the polyamic aci...  相似文献   

4.
First representatives of dichloroamino- and chloroaminofurazans, viz., 4,4′-bis(dichloroamino)- and 4,4′-bis(chloroamino)-3,3′-azofurazans, were synthesized by the chlorination of 4,4′-diamino-3,3′-azofurazan with sodium hypochlorite in the CH2Cl2—H2O mixture.  相似文献   

5.
The synthesis and characterization of the fluoropolymers poly 1a – 1d and poly 2a – 2d with pendant hydroxyl groups were examined. The polyaddition of bis(epoxide)s [2,2′‐bis(4‐glycidyletherphenyl)hexafluoropropane and bisphenol A diglycidyl ether] with dicarboxylic acids (tetrafluoroterephthalic acid and terephthalic acid) and diols [2,2′‐bis(4‐hydroxyphenyl)hexafluoropropane, 2,2′,3,3′,5,5′,6,6′‐octafluoro‐4,4′‐biphenol, 1,4‐bis(hexafluorohydroxyisopropyl)benzene, and 1,3‐bis(hexafluorohydroxyisopropyl)benzene] was carried out at 50–100 °C for 6–48 h in the presence of quaternary onium salts (tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylphosphonium bromide, and tetrabutylphosphonium chloride; 2.5 mol %) as catalysts in dimethyl sulfoxide, N‐methylpyrrolidone, dimethylformamide, dimethylacetamide, dioxane, diglyme, o‐dichlorobenzene, chlorobenzene, and toluene to afford the corresponding polymers, poly 1a – 1d and poly 2a – 2d , with number‐average molecular weights of 11,000–59,400 in 45–97% yields. The solubility of the obtained polymers was good, and their thermal stability might be assumed from their structures. A linear relationship was observed between the contents of the fluorine atoms and the refractive indices. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1395–1404, 2002  相似文献   

6.
A new synthetic route to 2,2′,3,3′‐BTDA (where BTDA is benzophenonetetracarboxylic dianhydride), an isomer of 2,3′,3′,4′‐BTDA and 3,3′,4,4′‐BTDA, is described. Single‐crystal X‐ray diffraction analysis of 2,2′,3,3′‐BTDA has shown that this dianhydride has a bent and noncoplanar structure. The polymerizations of 2,2′,3,3′‐BTDA with 4,4′‐oxydianiline (ODA) and 4,4′‐bis(4‐aminophenoxy)benzene (TPEQ) have been investigated with a conventional two‐step process. A trend of cyclic oligomers forming in the reaction of 2,2′,3,3′‐BTDA and ODA has been found and characterized with IR, NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and elemental analyses. Films based on 2,2′,3,3′‐BTDA/TPEQ can only be obtained from corresponding polyimide (PI) solutions prepared by chemical imidization because those from their polyamic acids by thermal imidization are brittle. PIs from 2,2′,3,3′‐BTDA have lower inherent viscosities and worse thermal and mechanical properties than the corresponding 2,3′,3′,4′‐BTDA‐ and 3,3′,4,4′‐BTDA‐based PIs. PIs from 2,2′,3,3′‐BTDA and 2,3′,3′,4′‐BTDA are amorphous, whereas those from 3,3′,4,4′‐BTDA have some crystallinity, according to wide‐angle X‐ray diffraction. Furthermore, PIs from 2,2′,3,3′‐BTDA have better solubility, higher glass‐transition temperatures, and higher melt viscosity than those from 2,3′,3′,4′‐BTDA and 3,3′,4,4′‐BTDA. Model compounds have been prepared to explain the order of the glass‐transition temperatures found in the isomeric PI series. The isomer effects on the PI properties are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2130–2144, 2004  相似文献   

7.
Aromatic polyesters connected by methylene groups were synthesized. Two pairs of aromatic diacid chlorides, 3,3′-methylenedibenzoyl chloride and 4,4′-methylenedibenzoyl chloride were each polymerized via interfacial polycondensation with 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 3,3′-methylenediphenol, and 4,4′-methylenediphenol. For comparison, 3,3′-carbonyldibenzoyl chloride and 4,4′-carbonyldibenzoyl chloride were similarly polymerized with bisphenol A. Substitution of meta,meta' oriented phenylene groups for para,para' oriented phenylene groups had a significant and cumulative effect in reducing the glass transition temperatures of the polymers, thereby enhancing their processability. In air the methylene groups of the polyesters undergo oxidation and crosslinking at elevated temperatures. Electron beam irradiation of thin films of the methylene-linked polyesters at room temperature resulted in some chain extension and crosslinking, as evidenced by increased solution viscosity and gel formation. Irradiation at a temperature near or above the glass transition temperatures of the polymers greatly enhanced the tendency for the polymers to crosslink.  相似文献   

8.
A series of fluorinated copolyimides containing phthalazinone moieties were prepared from 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA), 3,3′4,4′-benzophenone-tetracarboxylic dianhydride (BPDA) and 2-(4-alninophenyl)-4-[4-(4-alninophenoxyl)phenyl]-2,3-phthalazin-1-one (DHPZ-2NH2) for making polymeric optical waveguides. The resulting copolymers containing 0-50mol% BPDA/DHPZ-2NH2 show good solubility and are soluble in some organic polar aprotic solvents. The copolyimides also present excellent thermal stability. These polymers possess high glass transition temperature higher than 603K and high decomposition temperature above 742K determined by differential scanning calorimetry and thermogravimetric analysis, respectively, under a nitrogen atmosphere. Their refractive indices could be controlled by varying the ratio of 6FDA and BPDA in the copolymer from 0.5 to 1.0, and the in-plane refractive indices (riTE) range from 1.6366 to 1.6668 and the out-of-plane refractive indices (nTM) from 1.6024 to 1.6280 at 632.8nm.The polymers birefringence (0.0342—0.0388) is almost independent of the 6FDA content of copolymer, which indicated that the phthalazinone-containing copolyimides could be suitable to fabricate optical waveguides possessing a low polarization dependent loss (PDL).  相似文献   

9.
Six ladder or partly ladder polymers have been prepared by the condensation reactions of combinations of two diaminodithiophenols, 4,6-diamino-1,3-dithiophenol and 3,3′-dimercaptobenzidine, with three tetrachloroquinoxaline derivatives, 2,3,7,8-tetrachloro-1,4,6,9-tetraazaanthracene, 2,2′,3,3′-tetrachloro-6,6′-bisquinoxaline, and 2,2′,3,3′-tetrachloro-6,6′-diquinoxalyl ether, with the use of dimethylacetamide, hexamethylphos phoramide, and polyphosphoric acid as reaction media. The polymers thus obtained are highly colored, powedery materials which are slightly soluble in methanesulfonic acid and concentrated sulfuric acid. These polymers (ηinh > 1) show good thermal stability.  相似文献   

10.
A series of novel photosensitive polybenzoxazole precursors were prepared from polycondensation of 2,2-bis(3,3′-amino-4,4′-hydroxyphenyl)hexafluoropropane with photosensitive dicarboxylic acid chlorides such as p-phenylenediacryloyl chloride and benzophenone-4,4′-dicarboxylic chloride. The precursors are soluble in common organic solvents owing to the presence of perfluoromethyl groups in the chain structure, and insolubilized in the solvents on irradiation with the light. Polybenzoxazole patterns with high resolution as well as high aspect ratio were reproduced by baking the precursor patterns at 300°C. The pattern shrinkage on the conversion to polybenzoxazole was slight. The polybenzoxazole films offered good heat-resistance up to 400°C in addition to good electrical properties.  相似文献   

11.
1,6-Dialkoxy-3,4-diones 3 are easily accessible by acylation of enol ethers 1 with oxalyl chloride and subsequent elimination of hydrogen chloride using triethylamine. The open-chain 2,5-dimethyl derivative 3b is converted with amidines 4a-c and S-methylisothiourea (4d) , respectively, to give 2,2′-disubstituted 5,5′-dimethyl-4,4′-bipyrimidines 5a-d . The dihydrofuran and dihydropyran derivatives 3c and 3d , however, react with benzamidine (4c) in dimethylformamide only in the presence of calcium hydride as condensation agent yielding 5,5′-bis(2-hydroxyethyl)- and 5,5′-bis(3-hydroxypropyl)-2,2′-diphenyl-4,4′-bipyrimidine 6a and b.  相似文献   

12.
4,4?-Dichloro-1,1′ : 2′,1″ : 2″,1?-quaterphenyl ( 9 ), 4,4?-dichloro-1,1′ : 3′,1″ : 3″,1?-quaterphenyl ( 10 ), and 4,4?-dichloro-1,1′ : 4′,1″ : 4″,1?-quaterphenyl ( 11 ) were synthesized by Pd (0) catalyzed cross-coupling reaction of 4-chlorobenzeneboronic acid with 2,2′-, 3,3′-, and 4,4′-bis (trifluoromethanesulfonyloxy)biphenyl respectively. 4,4?-Dichloro-1,1′ : 2′,1″ : 2″,1?-quaterphenyl ( 9 ) and 4,4?-dichloro-1,1′ : 3′,1″ : 3″,1?-quaterphenyl ( 10 ) were oligomerized by Ni(0) catalyzed homocoupling reaction to yield white and soluble oligophenylenes. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
A series of indan‐containing polyimides were synthesized, and their gas‐permeation behavior was characterized. The four polyimides used in this study were synthesized from an indan‐containing diamine [5,7‐diamino‐1,1,4,6‐tetramethylindan (DAI)] with four dianhydrides [3,3′4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), 3,3′4,4′‐oxydiphthalic dianhydride (ODPA), (3,3′4,4′‐biphenyl tetracarboxylic dianhydride (BPDA), and 2,2′‐bis(3,4′‐dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)]. The gas‐permeability coefficients of these four polyimides changed in the following order: DAI–BTDA < DAI–ODPA < DAI–BPDA < DAI–6FDA. This was consistent with the increasing order of the fraction of free volume (FFV). Moreover, the gas‐permeability coefficients were almost doubled from DAI–ODPA to DAI–BPDA and from DAI–BPDA to DAI–6FDA, although the FFV differences between the two polyimides were very small. The gas permeability and diffusivity of these indan‐containing polyimides increased with temperature, whereas the permselectivity and diffusion selectivity decreased. The activation energies for the permeation and diffusion of O2, N2, CH4, and CO2 were estimated. In comparison with the gas‐permeation behavior of other indan‐containing polymers, for these polyimides, very good gas‐permeation performance was found, that is, high gas‐permeability coefficients and reasonably high permselectivity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2769–2779, 2004  相似文献   

14.
使用4-苯乙炔基苯胺(4-PEA)作为反应性封端剂,和3,3′,4,4′-二苯醚四酸二酐(ODPA),3,3′,4,4′-联苯四酸二酐(BPDA),1,4-双(4′-氨基-2′-三氟甲基苯氧基)苯(BTPB)和3,4′-二氨基二苯醚(3,4-′ODA)反应合成了系列4-苯乙炔基苯基封端的聚酰亚胺低聚物,对低聚物的化学结构、热性能和熔体粘度以及固化后树脂的热性能等进行了研究.实验结果表明,低聚物均具有一定的结晶性,含有ODPA的聚酰亚胺低聚物较之含有BPDA的低聚物具有更低的熔体粘度,且出现最低熔体粘度的温度更低;固化后的树脂表现出良好的热性能,含有BPDA的树脂具有更高的玻璃化转变温度;系列低聚物中二胺单体的比例对于低聚物的熔体粘度和固化后树脂的热稳定性有一定影响.  相似文献   

15.
Two ternary miscible fluoro-polyimide blends have been identified. They are 6FDA-3,3′-6F-diamine/6FDA-4,4′- F - diamine/BTDA - 4,4′ - 6FDA blend and 6FDA - 3,3′ - 6F - diamine/6FDA - 4,4′ - 6F - diamine/ODPA - PMDA - 4,4′-6F-diamine blend (6FDA is 2,2′-bis(3,4′-dicarboxy- phenyl)hexafluoro propane dianhydride, 6F-diamine is 2,2′-bis(3-aminophenyl) hexafluoro propane). Their miscibility probably arises from the fact that their diamine parts have hexafluoro isopropylidene groups, their dianhydride parts have similar bond angle, space, rigidity and length. Several 6FDA-polyimides and PCTG 5445 (glycol-modified polycyclohexanedimethanolterephthalate) form- ing miscible blends have also been discovered. These surprising results suggest that hexafluoro-isopropylidene-group containing polyimides are quite intermolecular active and the 1,4-cyclohexane dimethanol component in PCTG 5445 may also offer unique miscibility capability. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
The synthesis and study of some polyenes, polýiminoimides and Schiff polybases with ferrocene obtained by either polymerization or polycondensation are reported.The following monomers were used: ethynylferrocene, 1-chloro-1′-ethynyl-ferrocene, α-chloro-β-formyl-p-ferrocenylstyrene, p-ferrocenylphenylacetylene, p-ferrocenylacetophenone, 1,1′-diacetylferrocene and 1,1′-bis[β-(2-furyl)acryloyl]ferrocene which were characterized by spectral and thermodifferential analyses and Hückel MO calculations. The polymerization was performed in the presence of benzoyl and lauroyl peroxides, triisopropylboron and complex catalysts of [P(C6H5)3]2 NiX2 type. The ferrocene derivatives were polycondensed with biuret, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl thioether, 4,4′-diamino-2,2′-dinitrodiphenyl disulphide in the presence of metallic salts and p-toluene sulphonic acid as catalysts.Polymers with either linear or tridimensional structure showing good thermal stability and semiconducting properties have been obtained. Some polymers show catalytical activity in the polymerization of chloroformylated vinylic derivatives.  相似文献   

17.
Abstract

A series of poly(ether sulfone)s and poly(ether ketone)s were synthesized from combinations of 1,5- and 2,6-bis(4-fluorosulfonyl)naphthalene, 2,6-bis(4-fluorobenzoyl)naphthalene, and 2,6-bis(4-fluorobenzoyl)quinoline with 3,3′,5,5′-tetramethylbiphenyl-4,4′-diol and 2,2′,3,3′,5,5′-hexamethylbiphenyl-4,4′-diol. The polycondensations proceeded quantitatively in diphenylsulfone in the presence of anhydrous potassium carbonate to afford polymers with inherent viscosities between 0.40 and 1.28 dL/g measured in N-methyl-2-pyrrolidone or concentrated sulfuric acid. The tetramethyl- and hexamethyl-substituted aromatic polyethers exhibited good thermal stability, did not decompose below 330°C in both air and nitrogen atmospheres, and had higher glass transition temperatures than the corresponding unsubstituted polymers. The methylsubstituted poly(ether sulfone)s and poly(ether ketone)s showed good solubility in such common organic solvents as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, tetrahydrofuran, chloroform, and 1,4-dioxane.  相似文献   

18.
A simpler technique for the synthesis of 2,2-bis(4-allyoxyphenyl)hexafluoropropane has been achieved from 4,4′-(hexafluoroisopropylidene)diphenol for obtaining 2,2-bis(3-allyl-4-hydroxyphenyl)hexafluoropropane. This monomer and its corresponding hybrid organic/inorganic siloxane polymer are successfully used as a coating material for the detection of toxic chemical warfare agents.  相似文献   

19.
Two new phenylethynyl endcapping compounds, 3- and 4-amino-4′-phenylethynylbenzophenone, were synthesized and used to terminate imide oligomers from 3,4′-oxydianiline and 4,4′-oxydiphthalic anhydride at a calculated molecular weight of 9000 g/mol and from 3,4′-oxydianiline (0.85 mol), 1,3-bis (3-aminophenoxy) benzene (0.15 mol), and 3,3′,4,4′-biphenyltetracarboxylic dianhydride at a calculated molecular weight of 5000 g/mol. Glass transition temperatures for the cured oligomers were ~ 249°C for the former and 272°C for the latter. Films cured at 350°C for 1 h were tough and flexible and provided high tensile properties. The uncured oligomers were readily compression molded to provide tough, solve nt-resistant moldings. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
2-Chloro-3,4,5-tris(trifluoromethylthio)pyrrole ( 2a ), 3-Chloro-2,4,5-tris(trifluoromethylthio)pyarrole ( 2b ) and 3,4-dichloro-2,5-bis(trifluromoethylthio)pyrrole ( 2c ) react with silver nitrate/silver acetate in good yield to give the corresponding N-silver salts 3a-c . Compound 2b forms with an aqueous potassium hydroxide solution the N-potassium salt 4 . Compounds 3a and 3b react with iodine to give the dimeers 2,2′-dichloro-3,3,′ 4,4′5,5′-hexakis(trifluoromethylthio)-2,2′-bi-2H-pyrrolyl ( 5a ) and 3,3′-dichloro-2,2′,4,4′,5,5′-hexakis(trifluoromethylthio)-2,2′-bi-2H-pyrrolyl ( 5b ). The dimers dissociate in solution to the corresponding pyrrolayl radicals. The esr and endor spectra of 3-chloro-2,4,5-tris(trifluoromethylthio)pyrrolyl were measured; coupling constants are given. For the newly prepared substances melting-points, 19F-nmr and ir spectroscopical data are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号