首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphiphilic polymers were prepared by the copolymerization of 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and aromatic vinyl compounds such as 9-vinylphenanthrene (VPh) and 1-vinylpyrene (VPy) with the expectation that they would serve as potential media for photosensitized electron transfer reactions. AMPS strongly solubilizes the hydrophobic segments into water; i.e., poly(AMPS-co-VPh) with VPh mole fraction (fPh) up to about 0.60 and poly(AMPS-co-VPy) with VPy mole fraction (fPy) up to about 0.35 were found to be soluble in water. Poly(AMPS-co-VPh) in aqueous solution, as compared with that in DMF solution, showed a broad fluorescence spectrum with significant tailing in the longer-wavelength region along with a decrease in the intensity of the structured, monomer fluorescence band. These phenomena seem to imply the presence of an excimerlike interaction of phenanthryl groups in an aqueous solution through which the fluorescence from excited VPh units may be partly self-quenched. A considerable enhancement of the fluorescence from sodium 8-anilino-1-naphthalenesulfonate (ANS) caused by hydrophobic interaction of the probe with poly(AMPS-co-VPh) in aqueous solution indicated that these copolymers assume micellar structures. The fluorescence of these copolymers in aqueous solutions was quenched by bis(2-hydroxyethyl)terephthalate (BHET), an amphiphilic quencher, far more effectively than by fumaric acid, a hydrophilic quencher. This tendency is particularly strong for the copolymers with higher content of hydrophobic units. The second-order rate constants for the quenching of poly(AMPS-co-VPh) (fPh = 0.58) by BHET were found to be ca. 3 × 1010 and 1.5 × 109 M?1 s?1 in aqueous and in DMF solution, respectively. The larger value in an aqueous solution is presumably due to an increase of the effective concentration of the amphiphilic quencher around the VPh sequences of the copolymer resulting from hydrophobic interaction.  相似文献   

2.
Abstract— Fluorescence quenching of amphiphilic copolymers, poly(9-vinylphenanthrene-co-sodium 2-acrylamido-2-methylpropanesulfonate) (APh) and poly(9-vinylphenanthrene-co-3-methacrylamidopropyltrimethylammonium methyl sulfate) (QPh), in aqueous solution, was studied using methyl viologen (MV2+) or 4,4'-bipyridinium-1, 1'-bis(trimethylenesulfonate) (SPV) as oxidative quenchers. The fluorescence of the excited phenanthrene groups in APh was found to be efficiently quenched by MV2+. The apparent second-order rate constant for the quenching, kq, ranged in the magnitude of 1011 -1012M-1 s-1, which are well beyond the diffusion-controlled limit. This is presumably due to an increase of the effective concentration of MV2+ around the fluorophore in the copolymer resulting from electrostatic attraction between MV2+ and anionic segments of APh. This strong electrostatic interaction also favors the formation of ground-state EDA (electron donor acceptor) complex between the phenanthrene residue and MV2+. Such striking behaviors were not observed with the related model compound. Unexpectedly, the quenching with SPV, a zwitterionic quencher, was also enhanced in the polymer system (kq= 2–6 × 1010M-1 s-1), suggesting the presence of some attractive interaction between APh and SPV. Contrary to the APh system, the fluorescence quenching of the corresponding cationic polymer (QPh) with MV2+ was strongly diminished (kq= 5 × 108M-1 s-1). This indicates that the polycation of QPh effectively prevents the access of MV2+ to the polymer.  相似文献   

3.
Amphiphilic block copolymers consisting of methacrylic acid (MA) sequences and p-N,N-dimethylaminostyrene (DMS) sequences were prepared by living anionic polymerization. DMS was polymerized by lithium naphthalene in tetrahydrofuran to yield a living polymer solution, to which trimethylsilyl methacrylate (TMSM) was added to allow the block copolymerization. The conversion of TMSM was dependent on the countercation, i.e., with Na+ as counterion, no quantitative conversion was reached owing to premature termination, whereas with Li+ the conversion was quantitative. The role of the counterion was discussed in some detail in connection with self-termination by the backbiting mechanism. The trimethylsilyl ester groups in the block copolymer were quantitatively hydrolyzed by treatment with aqueous methanol at room temperature, yielding MA sequences. The block copolymer of MA and DMS exhibited micellar properties in an aqueous solution.  相似文献   

4.
In this paper, the interaction between squarylium cyanine and porphyrin in chloroform is investigated by absorption and fluorescence spectroscopy. Emphasis has been put on the mechanism of intermolecular energy transfer. The overlap integral J between the absorption spectrum of squarylium cyanine and the fluorescence spectrum of porphyrin was calculated, which reveals that the singlet-singlet energy transfer may occur from porphyrin to squarylium cyanine in solution. In comparison of the observed rate constant [kqII=6.1 ×1013 (mol/L)-1·s-1] for fluorescence quenching of porphyrin by squarylium cyanine with the diffusion rate constant in chloroform [kdif=1.1×1010 (mol/L)-1·s-1] and the rate of energy transfer [ket≤6.7×104 (mol/L)-1·s-1 in the experimentally dilute solutions] estimated from Forster formula, the possibility of energy transfer by electron exchange or/and coulombic mechanism could be excluded. So it has been definitely convinced that the intermolecuiar energy transfer between them is  相似文献   

5.
Thioxanthone‐based 9‐(2‐Morpholine‐4yl‐acetyl)‐5‐thia‐napthasen‐12‐one (TX‐MPM) was synthesized and characterized as a one‐component novel visible photoinitiator. Its capability to act as an initiator for the polymerization of methyl methacrylate (MMA) was examined in photoreactor and also daylight. Photophysical properties: fluorescence and phosphorescence emission spectra and fluorescence quantum yield of TX‐MPM (?f = 0.29) were determined. The phosphorescence lifetime was found 131 ms for TX‐MPM and 110 ms for initiator‐attached polymer (PMMA) at 77 K, indicated a π→π* nature of the lowest triplet state. A model compound, morpholino acetonapthone was used as quencher for the triplet states of TX‐MPM and the quenching rate constant was determined (kq = 1.26 × 109 M?1s?1). According to laser flash photolysis studies, intermolecular hydrogen abstraction process was more dominant path to the formation of the initiating radicals. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
7.
Abstract— The hypericin analogs blepharismin (BP), oxyblepharismin (OxyBP) and stentorin (ST), the photosensing chromophores responsible for photomotile reactions in the ciliates Blepharisma japonicum (red and blue cells) and Stentor coeruleus, represent a new class of photoreceptor pigments whose chemical structures have recently been determined. In the case of ST it has been shown that the first excited singlet state can be deactivated by donation of an electron to an appropriate acceptor molecule (e.g. a quinone molecule). This charge transfer can be considered a possible mechanism for the primary photoprocess for the photomotile responses in S. coeruleus. To determine whether an electron transfer process also occurs in the deactivation of excited blepharismin, we studied the fluorescence quenching of OxyBP in dimethyl-sulfoxide (DMSO) and in ethanol using electron acceptors with different reduction potentials. Under our experimental conditions ground state and excited state complexes (like fluorescent exciplexes) are not formed between the fluorophore and the quenchers. In DMSO the bimolecular quenching constant values (kq) calculated on the basis of the best fitting procedures clearly show that the quenching efficiency decreases with the quencher negative reduction potential, E0. The kq (M-1 s-1) and E0 (V) values are, respectively, 7.8 times 109 and -0.134 for 1,4-benzoquinone, 8.9 times 109 and -0.309 for 1,4-naphthoquinone, 2.4 times 109 and -0.8 for nitrobenzene, 0.009 times 109 and -1.022 for azobenzene and 0 and -1.448 for benzophenone. These findings point to the conclusion that upon formation of the encounter complex between OxyBP and the quencher, an electron is released from excited OxyBP to the quencher, similar to what happens in ST. It is suggested that in the pigment granules such a light-induced charge transfer from excited blepharismin to a suitable electron acceptor triggers sensory transduction processes in B. japonicum.  相似文献   

8.
Polymerization of acrylonitrile photoinitiated by naphthalene, anthracene, phenanthrene, and pyrene is accelerated by an admixture of zinc (II) chloride, acetate, or nitrate. The effect of zinc (II) salts on the rate of pyrene-photoinitiated polymerization of acrylonitrile leads to an increase in this rate in the order Zn/OCOCH3/2 < ZnCl2 < Zn/NO3/2. The maximum polymerization rate is achieved at the molar ratio [ZnCl2]/([ZnCl2] + [pyrene]) approximately 0.7. In contrast to the photoinitiated polymerization of acrylonitrile, the methyl methacrylate admixture of zinc (II) chloride exerts a smaller effect on the polymerization rate. In the pyrene-photoinitiated polymerization of styrene an admixture of zinc (II) chloride retards the polymerization rate. Fluorescence of aromatic hydrocarbon in the system acrylonitrile–aromatic hydrocarbon is efficiently quenched by zinc (II) chloride. Stern–Volmer constants determined for pyrene (80 dm3 mole?1), phenanthrene (66 dm3 mole?1), and naphthalene (49 dm3 mole?1) are higher by about 2–3 orders of the Stern–Volmer constants for fluorescence quenching of aromatic hydrocarbons by acrylonitrile in the absence of ZnCl2. The fluorescence of anthracene in acrylonitrile is not quenched by ZnCl2. The acceleration effect of Zn (II) salts on the polymerization of acrylonitrile photoinitiated by aromatic hydrocarbons depends on two factors: an increase in the ratio of the rate constant of the growth and termination reactions, kp/kt, and an increase in the quenching constant of fluorescence of aromatic hydrocarbon, kq, by the complex {acrylonitrile…ZnCl2}. ZnCl2 thus influences both the growth and initiation reactions of the polymerization process.  相似文献   

9.

Radical copolymerization reaction of vinyl acetate (VA) and methyl acrylate (MA) was performed in a solution of benzene‐d6 using benzoyl peroxide (BPO) as the initiator at 60°C. Kinetic studies of this copolymerization reaction were investigated by on‐line 1H‐NMR spectroscopy. Individual monomer conversions vs. reaction time, which was followed by this technique, were used to calculate the overall monomer conversion, as well as the monomer mixture and the copolymer compositions as a function of time. Monomer reactivity ratios were calculated by various linear and nonlinear terminal models and also by simplified penultimate model with r 2(VA)=0 at low and medium/high conversions. Overall rate coefficient of copolymerization was calculated from the overall monomer conversion vs. time data and k p  . k t ?0.5 was then estimated. It was observed that k p  . k t ?0.5 increases with increasing the mole fraction of MA in the initial feed, indicating the increase in the polymerization rate with increasing MA concentration in the initial monomer mixture. The effect of mole fraction of MA in the initial monomer mixture on the drifts in the monomer mixture and copolymer compositions with reaction progress was also evaluated experimentally and theoretically.  相似文献   

10.
Modified Stern-Volmer equation is obeyed by bovine serum albumin (BSA)-iodide system showing selective quenching of tryptophanyl fluorescence of BSA. The fraction of accessible protein fluorescence is 0.56 and the effective Stern-Volmer constant is 290 M-1 at pH 7.4 in 0.005 M phosphate buffer at 25°C. Collisional quenching is operative both in the BSA -I−1 system and the model system, tryptophan-I−1. It is supported by the observed relationship between the ratio of quenching rate constants (k q ) and diffusion coefficients and alsok q with bulk viscosity.  相似文献   

11.
Abstract— Investigation of the photochemistry of the phototoxic polyacetylene phenylheptatriyne, PHT, was undertaken to obtain further information on competing photo-oxidative type II and non-oxidative processes observed in vivo. Laser excitation (308 or 337 nm) led to the formation of a strong triplet signal with a lifetime of 28 μs in MeOH. The triplet was efficiently quenched by the triplet quencher 1,3-octadiene (kq - 1.6 × 109M-1s-1). Quenching by O2 occurred with a rate constant (1.7 × 109M-1s-1) comparable to the rate of electron transfer to methylviologen (1.4 × 109M-1 s-1). The formation of singlet oxygen established earlier (type II reaction) in the former case and the semioxidized PHT radical in the latter case are consistent with the competing phototoxic processes observed in vivo.  相似文献   

12.
The presence of ceric and bromide ions catalyzes the isomerization of maleic acid (MA) to fumaric acid (FA) in aqueous sulfuric acid. A kinetic study of this bromine-catalyzed reaction was carried out. The reaction between ceric ion and maleic acid is first order with respect to Ce(IV). For [Ce(IV)]0=5.0×10?4 M, [H2SO4]0=1.2 M, μ=2.0 M (adjusted by NaClO4), and [MA]0=(0.5–1.0)M, the observed pseudo-first-order rate constant (k03) at 25° is k03=7.622×10?5 [MA]0/(1+0.205[MA]0). The reaction between ceric and bromide ions is first order with respect to Ce(IV). For [Ce(IV)]0=5.0×10?4 M, [H2SO4]0=1.2 M, μ=2.0 M, and [Br?]0=(0.025–0.150)M, the pseudo-first-order rate constant (k02) at 25° is k02= (4.313±0.095)x10?2[Br?]2+(2.060±0.119)x10?3[Br?]. The reaction of Ce(IV) with maleic acid and bromide ion is also first order with respect to Ce(IV). For [Ce(IV)]0=5.0×10?4 M, [MA]0=0.75 M, [H2SO4]0=1.2 M, μ=2.0 M, and [Br?]0= (0.025–0.150)M, the pseudo-first-order rate constant (k03) at 25° is k03= (5.286±0.045)x10?2[Br?]2+(3.568±0.056)x10?3[Br?]. For [Ce(IV)]0=5.0 × 10?4 M, [Br?]0=0.050 M, [H2SO4]0=1.2 M, μ=2.0 M, and [MA]0=(0.15–1.0)M at 25°, k03=(2.108×10?4+2.127×10?4[MA]0)/(1+0.205[MA]0). A mechanism is proposed to rationalize the results. The effect of temperature on the reaction rate was also studied. The energy barrier of Ce(IV)—Br? reaction is much less than that of Ce(IV)—MA reaction. Maleic and fumaric acids have very different mass spectra. The mass spectrum of fumaric acid exhibits a strong metastable peak at m/e 66.5.  相似文献   

13.
Abstract

The kinetics of the radical copolymerization of acrylonitrile with methyl acrylate complexed by zinc chloride (ZnCl2) in dimethylformamide (DMF) was investigated at 60, 65, and 70°C. The kinetic data revealed that Rp was an inverse function of ZnCl2 concentration and directly related to monomers concentration. The increase in the activation energy from 11.85 to 19.25 kJ·mol?1 and the decrease in the value of the ratio of the propagation to termination rate constants (kp 2/kt ) from 0.08 to 0.06 L·mol?1·s?1 on the addition of ZnCl2 indicated its retarding effect. The chain transfer constant of DMF for the system was 16.25 × 10?4, accordingly the degree of polymerization decreased. The structure and composition of the copolymers determined by 1H-NMR and elemental analysis was found to be alternating. The nonideal behavior of the glass transition temperatures determined by DSC also favors the alternation of monomer units in the copolymer. The reaction proceeds via a cross-propagation mechanism.  相似文献   

14.
Abstract— Norfloxacin is a fluoroquinolone (FQ) antibiotic that has been reported to cause cutaneous photosensitivity in animals and occasionally in humans. We have studied the fluorescence and singlet oxygen (1O2)-generating properties of norfloxacin. Upon UV excitation the drug fluoresces in water, and the relative intensities of two major fluorescence bands at ca 420 and 450 nm are affected by pH. The overall quantum yield of fluorescence (φF) is also strongly pH dependent: φF is low in 0.2 N HC1 solution (0.2), increasing steeply to 0.12 at pH 4, then gradually decreasing to 0.01 at pH 10. The changes in φF are accompanied by changes in fluorescence lifetime from 0.6 ns at pH 1 to 1.8 ns at pH 4. Norfloxacin exhibits phosphorescence in low temperature glasses. The formation of a triplet state at room temperature is also suggested by 1O2 phosphorescence in aerobic D2O. This phosphorescence is “self-quenched” by norfloxacin itself with an efficiency that is pH dependent: kq is 7.9 ×106M?1s?1 at pD 4, decreases to 1.9 × 106M?1 s?1 at pD 7.5 but then increases about 20-fold in alkaline D2O solutions. This quenching causes the observed 1O2 production by norfloxacin (0.1 mM) to show a maximum at around pH 8–9. However, after correction for self-quenching, the quantum yield of 1O2 production (φso), measured by using perinaphthenone as a standard, yielded the following values: φso is about 0.07 in 0.2 N DCl solution, 0.08 at pH 7.5 and then increases smoothly to ~ 0.2 in 0.1 M NaOD solution. The relatively high, unquenched 1O2 production at physiological pH 7.4 (φso~ 0.08) suggests that 1O2 reactions may play an important role in the cutaneous phototoxicity of norfloxacin and other FQ antibiotics.  相似文献   

15.
The laser flash photolysis of pyrazine in water and in organic solvents has been examined. The 3(n, π*) state in water has absorption bands at 230, ≈ 260, ≈ 295, ≈ 640, 700 and 810 nm, and decays with k = 2.2 × 105 sec?1. It is quenched by oxygen with kq = 3.2 × 109 M?1 sec?1 and by various H-atom donors, e.g., kq = 1.3 × 108 M?1 sec?1 for isopropyl alcohol. On reaction with H-atom donors, the chemistry of 3(n, π*) pyrazine produces the neutral pyrazyl-radical and the dihydro radical cation, whose characteristic absorption spectra have been identified. These results are discussed by comparison with 3(π, π*) diazines and with 3(n, π*) aromatic carbonyl compounds.  相似文献   

16.
Temperature dependences of the relative reactivity of potassium aryloxides XC6H4O?K+ toward 2,4‐dinitrophenyl benzoate in 50 mol% dimethylformamide (DMF)–50 mol% H2O mixture have been studied using the competitive reactions technique. Correlation analyses of the relative rate constants kX/kH and differences in the activation parameters (ΔΔН and ΔΔS) of the competitive reactions have revealed the existence of two isokinetic series of the reactions of 2,4‐dinitrophenyl benzoate with potassium aryloxides with electron‐donating substituent (EDS) and electron‐withdrawing substituent (EWS), respectively. We have investigated the effect of the substituent X on the activation parameters for each isokinetic series and concluded that the mechanism of the reactions of 2,4‐dinitrophenyl benzoate with potassium aryloxides XC6H4O?K+ in 50 mol% DMF–50 mol% H2O mixture is the same as in DMF. Analysis of the obtained data with using the method of two‐dimensional reaction coordinate diagram leads to the conclusion that the variation of the solvent from DMF to 50 mol% DMF–50 mol% H2O mixture affects the reaction pathway. The rate constant kX for the reaction of 3‐nitrophenyl benzoate with potassium 4‐methoxyphenoxide and the relative rate constants kX/kH for the reaction of 3‐nitrophenyl benzoate with potassium aryloxides XC6H4O?K+ with EDS were measured in 50 mol% DMF–50 mol% H2O mixtures at 25°C, and it has been shown that the addition of water to DMF does not change the mechanism but slows down these reactions.  相似文献   

17.
The kinetics of ethylene/propylene copolymerization catalyzed by (ethylene bis (indeyl)-ZrCI2/methylaluminoxane) has been investigated. Radiolabeling found about 80% of the Zr to be catalytically active. The estimates for rate constants at 50°C are k11 = 1104 (Ms)?1, k12 = 430 (Ms)?1, k22 = 396 (Ms)?1,k21 = 1020 (Ms)?1, and kAtr,1 + kAtr.2 = 1.9 × 10?3 s?1. Substitution of trimethylaluminum for methylaluminoxane resulted in proportionate decrease in polymerization rate. The molecular weight of the copolymer is slightly increased by loweing the [Al]/[Zr] ratio, or addition of Lewis base modifier but at the expense of lowered catalytic activity and increase in ethylene content in the copolymer. Lowering of the polymerization temperature to 0°C resulted in a doubling of molecular weight but suffered 10-fold reduction in polymerization activity and increase of ethylene in copolymer.  相似文献   

18.
Pyrene fluorescence quenching by phenylazide derivatives with donor and acceptor substituents has been studied by fluorescence spectroscopy and flash photolysis. The rate constants of quenching (k q) in acetonitrile ((0.2–1.2) × 1010 l mol?1 s?1) are found to be close to a diffusion limit; the rate constants were somewhat higher for perfluoro-substituted arylazides. It is found that k q does not depend on solvent polarity; the formation of the pyrene cation in the course of pyrene fluorescence quenching by tolylazide was not detected. Pyrene fluorescence quenching occurred by an energy-transfer mechanism; this is supported by the coincidence of the quantum yields of the direct and sensitized photodecomposition of tolylazide. As estimated, energy transfer in rigid media occurs at characteristic distances of about 10 Å.  相似文献   

19.
Abstract— The decay of the indole triplet of single tryptophan-containing proteins and model compounds can be readily measured at room temperature in aqueous solution by monitoring the triplet-triplet absorption or phosphorescence emission following a 265 nm exciting laser pulse. The quenching action of acrylamide on the triplet excited state of indole side chains was studied in an analogous fashion to that previously done at the singlet level (Eftink and Ghiron, 1977). The acrylamide triplet quenching constant (tkq) ranged from a high of 7.8 times 108M-1 s-1 for the exterior indole of corticotropin (ACTH) to a low of 2 times 105 Af-1 s-1 for the interior indole of ribonuclease T, (RNase T,). The ratio (7) of these values with their respective acrylamide singlet quenching constants (tkq),(γ=tkq8Kq) ranged from a high of 0.22 for ACTH to a low of 0.001 for RNase T1,. Acrylamide is also an inefficient quencher of model indoles in various solvents (i.e. it has a γ less than 1). The magnitude of γ varied from a high of 0.3 in H20 to a low of 0.02 in acetonitrile, but did not correlate with viscosity, dielectric constant or polarity. The lower efficiency observed for internal indole groups can not be explained by that class of models which predict the presence of static quenching at the triplet level, since none was observed. The present results confirm the observation of Calhoun et al. of a large discrepancy between acrylamide's singlet and triplet quenching constants for buried indole side chains, but suggest that it may be largely explained by the fact that acrylamide is an inefficient quencher of the indole triplet state (1983). The magnitude of this inefficiency is probably determined by specific microenvironmental factors. Thus, unlike 8Kq, the environmentally sensitive lkH cannot be easily used to characterize the dynamics of proteins.  相似文献   

20.
Emission quenching of [Ru(bpy)2(4, 4'-dcbpy)] (PF6)2 (1) by benzenamine,4-[2-[5-[4-[4-dimethylamino]phenyl]-4,5-di-hydro-1-phenyl-1H-pyrazol-3-yl]-ethenyl]-N,N-dimetyl (2) or 1, 5-diphenyl-3-(2-phenothiazine)-2-pyrazoline (3) was observed. Measurements of the emission decay of 1 before and after addition of 2 or 3 by single photon counting technique con-finned the observations. The emission quenching of 1 by 2 or 3 was submitted to Stern-Volmer equation. It was calculated that the quenching rate constants (kq) are 5.5 × 109(mol/L)-1s-1 for 2 and 4.0 × 109(mol/L)-1s-1 for 3, respectively. These results indicated a character of dynamic quenching process. The singlet-state of 2 or 3 was also quenched by 1. The quenching behaviors did not conform to the Stern- Volmer equation and involved both static and dynamic quenching processes. The apparent quenching rate constant (kapp) was calculated to be 3 × 109 (mol/L)-1 for the interaction of excited 2 with 1, and 1.2 × 109 (mol/L)-1 for that of excited 3 wit  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号