首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Fragment–molecule (F+M) adduct ions of a variety of heterocyclic systems have been observed in positive methane chemical ionization spectra at relatively low sample concentrations, i.e. in the microgram range. The relative abundance of these adduct ions increases with sample concentration. Possible mechanisms of formation of F+M are discussed. Formation of such ions should be recognized as an artifact, otherwise such F+M adduct ions in chemical and electron ionization may be mistaken for impurities present in a sample.  相似文献   

2.
3.
4.
The use of electrospray ionization mass spectrometry (ESI/MS) for the detection of neutral organic molecules becomes possible by their derivation with specific ESI/MS tagging reagents that have either proton or metal ion binding sites. We used the neutral crown ether group in several reagents to attach a metal binding site to substrate molecules. Application of this method to steroids, amino acids, vitamin D, fatty acids, and fullerenes is described. Besides characterization, tagged molecules can be used for studying organic reactions by ESI/MS. This work demonstrates that ESI/MS provides a unique window on fullerene solution chemistry. ESI/MS is not only an excellent tool for the analysis of biopolymers but is also useful for studying the organic chemistry of small neutral molecules.  相似文献   

5.
The electron impact and methane chemical ionization mass Spectrometry of fifteen trisilanes and trisiloxanes containing various substituents was studied with the aid of exact mass measurements and metastable ion analyses. Migration reactions of the two kinds of compounds are discussed.  相似文献   

6.
The chemical ionization mass spectra of 16 amino acid thiohydantoins were examined using isobutane or ammonia as reagent gases. Except for a few cases, including some aromatic amino acids, the chemical ionization spectra were much simpler than the corresponding electron impact spectra. Therefore, the major component in the amino acid thiohydantoin mixture was easily detected by chemical ionization mass spectrometry. The combination of the chemical ionization method and thiohydantoin formation was applied successfully to the sequence analysis of model peptides.  相似文献   

7.
Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.  相似文献   

8.
9.
This work serves as a follow-up to Part I of experiments designed to determine the underlying principles in the formation of pseudomolecular, or adduct, ions during electrospray ionization. Aromatic acids were studied by flow injection analysis in the negative ionization mode of electrospray ionization mass spectrometry. Part I dealt with common acidic anti-inflammatory pharmaceuticals. such as ibuprofen and related analogues. Part II deals with functionally less complex molecules, namely benzoic acid (BA) and substituted benzoic acids. Halide-substituted molecules are investigated to deduce the effect of electron-withdrawing substituents (bromo-, chloro-, and fluoro-) and ring position (ortho-, meta- and para-) on the response of a traditional deprotonated molecular ion ([M-H]-) and a sodium-bridged dimer ion ([2M-2 H+Na]-). Amino-substituted benzoic acids are also analyzed in order to study the effect of an additional ionizable group on the molecule, and para-tert.-butyl-BA is analyzed to study the effect of increased hydrophobicity, as they relate to the formation of pseudomolecular ions. This study shows that solution character [octanol-water partition coefficient (or log P) and pKa] of the model compounds controls the relative efficiency of formation of [M-H]- and [2M-2H+Na]- ions. However the relative gas phase character (gas phase basicity and proton affinity) also has a significant effect on the formation of the sodium-bridged dimer ion. For the halide-substituted species, placement of the electron-withdrawing atom at the meta-position gives the greatest enhancement in sensitivity. Observations also show that as the structural complexity of the model compound increases, predictions relating analyte acidity to sodium-bridged dimer ion formation give way to a stronger dependence between log P values and ionization efficiency. Supporting this hypothesis is the nearly ten-fold enhancement in signal for tert.-butyl BA relative to BA. due to the greater hydrophobicity, and consequently, increased surface activity in an electrosprayed droplet of the analyte molecule.  相似文献   

10.
Extractive electrospray ionization mass spectrometry (EESI-MS) for real-time monitoring of organic chemical reactions was demonstrated for a well-established pharmaceutical process reaction and a widely used acetylation reaction in the presence of a nucleophilic catalyst, 4-dimethylaminopyridine (4-DMAP). EESI-MS provides real-time information that allows us to determine the optimum time for terminating the reaction based on the relative intensities of the precursors and products. In addition, tandem mass spectrometric (MS/MS) analysis via EESI-MS permits on-line validation of proposed reaction intermediates. The simplicity and rapid response of EESI-MS make it a valuable technique for on-line characterization and full control of chemical and pharmaceutical reactions, resulting in maximized product yield and minimized environmental costs. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The negative chemical ionization mass spectra of nitrobenzene, ethylene glycol dinitrate and nitroglycerine have been obtained using various reagent ions. For nitrobenzene, [OH]? gives the [M ? H]?, together with [M] ions formed by electron capture, but other reagent ions gave relatively low intensity adduct peaks. Ethylene glycol dinitrate and nitroglycerine gave abundant [M + X]? ions (X = NO2, NO3, Cl, Br, I), together with ions arising from the thermal decomposition of the samples in the heated inlet system. The rate of anion attachment to these compounds is much greater than that to related compounds having only one functional group, and it is suggested that this is due to the participation of the adjacent groups in the bonding between the substrate and anion.  相似文献   

12.
The hydrogen chemical ionization (H2 CI) mass spectra of a range of metal(II) (Ni, Cu, Co, Pt), metal (III) (Al, Mn, Ga, Fe (bearing a single axial ligand)) and metal(IV) (Si, Ge, Sn (bearing two axial ligands) and V (as V?O2+)) porphyrins have been determined, The spectra are highly dependent on the coordinated metal, rather than the axial ligand(s) (where present). Ni(II), Cu(II), Mn(II or III), Ga(III), Ge(IV), Fe(III) and Sn(IV) porphyrins fragment via hydrogenation and demetallation, followed by cleavage of the resulting porphyrinogens at the meso(bridge) positions to give mono- and di-pyrrolic fragments. Tripyrrolic fragments are also observed in the case of Ni(II), Cu(II) and Sn(IV). Fragmentations of this type are similar to those observed for free-base porphyrins. In the case of Pt(II), Co(II), Al(III), Si(IV) and V(IV) (as vanadyl), the dipyrrolic fragment ions are either very weak or completely absent; hence their H2CI spectra contain limited structural information. This variable CI behaviour may be related to the relative stabilities of the metalloporphyrins together with the multiple stable valency states exhibited by several metals.  相似文献   

13.
The fragmentation pathways of RDX in chemical ionization mass spectrometry have been rationalized, using data from different reagent gases, including CD4 and iso-C4D10. The dependence of spectra taken with different gases on the acid strength of the reactant ions in the gases is accounted for.  相似文献   

14.
D.G.I. Kingston  H.M. Pales 《Tetrahedron》1973,29(24):4083-4086
The chemical ionization mass spectra of a representative selection of flavones, flavonols, flavanones, and flavanols have been examined, using methane as the reagent gas. The flavones and flavonols showed no significant fragmentation under the conditions employed, but the flavanones and flavanols showed characteristic fragmentation which could be of use in structural elucidation of these compounds.  相似文献   

15.
16.
A new technique involving the addition of a compound to the analyte to serve as a source of "reagent" ions has been developed for negative-ion laser mass spectrometry. This "solid state chemical ionization" leads to ions characteristic of the analyte, owing to ion-molecule reactions between the "reagent" ion and the neutral analyte in the laser-generated plume. Polycyclic aromatic hydrocarbons show formation of an ion corresponding to (M + O - H)(-) in their negative-ion laser mass spectra when mixed with compounds such as sym-trinitrobenzene, sodium nitrate and sodium peroxide. NO(-)(2), O(-), and O(-)(2) serve as "reagent" ions in these compounds. Formation of (M + Cl)(-) is seen in the laser mass spectra of glycosides mixed with hexachlorobenzene. Chloride serves as the "reagent" ion in this case.  相似文献   

17.
A method using liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (LC/APCI-MS) has been developed for the characterization and determination of pyridoquinoline derivatives 4,6-bis(dimethylaminoethylamino)-2,8,10-trimethylpyrido[3,2-g]quinoline, 4,6-bis(dimethylaminoethoxy)-2,8,10-trimethylpyrido[3,2-g]quinoline and 4,6-bis[(dimethylaminoethyl)thio]-2,8,10-trimethylpyrido[3,2-g] quinoline, all with potential antitumor properties. LC separation was performed on a conventional C18 column using a binary mobile phase composed of acetonitrile and 50 mM aqueous ammonium formate at pH 3. The APCI mass spectra obtained showed that proton addition giving [M + H]+ was the common mode of ionization to the amino- and thiopyridoquinolines, whereas the alkoxypyridoquinoline was identified by the main formation of the [M - (C2H3)N(CH3)2 + H]+, followed by the [M + H]+ ion. The LC separation conditions and MS detection parameters were optimized for the determination. The analytical method was also applied to the determination of these pyridoquinoline derivatives in fetal calf serum using liquid-liquid extraction with dichloromethane. Acceptable recovery values were obtained, ranging between 45 and 98%.  相似文献   

18.
Pyrolysis ammonia chemical ionization (PyCI) mass spectrometry was performed on hy-droxyethyl-, hydroxypropyl-,methyl-, hydroxypropylmethyl-, and ethylhydroxyethyl cel-luloses. The mass peaks in the PyCI mass spectra of these cellulose ethers could be assigned to the ions of pyrolytic dissociation products which form via the [2 + 2 + 2] cycloreversion and the Ei elimination pyrolysis pathway. Structural information about the residual amount of nonderivatized cellulose, the relative chain length distributions of the substituents in hydroxyalkyl celluloses, and the end-capping of hydroxyalkyl substituents by alkyl groups in the mixed cellulose ethers is obtained. Interference of secondary pyrolysis products in the PyCI mass spectra is found to be of minor importance, especially in the lower mass regions. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Pyrolysis/mass spectrometric studies have been made on polystyrene, poly(vinyl chloride), and poly(methyl methacrylate) with electron ionization (EI) and chemical ionization (CI) mass spectrometry and a variable temperature probe for direct insertion into the source of the mass spectrometer. Similar results obtained with EI and CI mass spectrometry are in agreement with previous experiments. Advantages of the simplification of spectra in the CI made, as well as the advantages of using both techniques for identification of pyrolysis products, are discussed.  相似文献   

20.
Formation of ions in chemical ionization mass spectrometry of flavonoid compounds has been studied. Production of adduct ions and fragment ions as a function of ring substituents and of reagent gas has been observed. Pressure and repeller field dependence of ions has been found as a function of ring substituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号