首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycondensation of 2,5-bis(4-chloroformyl)-3,4-diphenylthiophene ( I ) with various bisphenols afforded tetraphenylthiophene-containing aromatic polyesters by the interfacial or solution polycondensation method. Polyamide–esters were obtained from I and aminophenols by means of the interfacial technique. These polymers had inherent viscosities of 0.4–0.8 dL/g. All the polymers were readily soluble in various organic solvents, and could be cast into transparent and flexible films. Their glass transition temperatures were in the range of 235–335°C. These polymers did not lose weight below 400°C in either air or nitrogen.  相似文献   

2.
The polycondensation of aminophenols with diacid chlorides was examined to determine if the amide-ester polymers obtained are random or ordered. All of the evidence obtained points to the conclusion that ordered copolymers indeed are prepared and that a “self-regulating” polymerization process is operating by virtue of the considerably greater reactivity of aromatic amino groups relative to phenol groups. The first step of the reaction involves the in situ preparation of a diphenol-amide which undergoes further condensation. The diphenol-amide intermediate may be isolated or reacted in situ. In addition to the ordered polymer from a given aminophenol and a single diacid chloride, ordered copolymers from two different diacid chlorides were prepared in which the diacid moieties appear in an alternating fashion; the structure of such polymers depends on the order of addition of the diacid chlorides. Corresponding polymers also may be prepared from the preformed diphenol-amide monomers. The molecular weights of certain of the polymers were sufficient for the preparation of films which could be hot-stretched severalfold. Interfacial polycondensations gave polymers of higher inherent viscosities than did solution polymerizations when aminophenols or diphenol-amide monomers were condensed with diacid chlorides.  相似文献   

3.
1, 4-Bis(4-aminophenoxy)-2-tert-butylbenzene was synthesized and used as a monomer to prepare a series of polyamides by the direct polycondensation with various aromatic dicarboxylic acids in N-methyl-2-pyrrolidone using triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.75–1.75 dL g−1. All the polyamides showed amorphous nature and most of them were soluble in polar solvents. Polyamides derived from 4, 4'-sulfonyldibenzoic acid and 4, 4'-hexafluoroisopropylidenedibenzoic acid were even soluble in common organic solvent such as THF. All polyamide films could be obtained by casting from their DMAc or NMP solutions. The polyamide films had a tensile strength range of 35–84 MPa, an elongation range at break of 3–7%, and a tensile modulus range of 1.2–2.5 GPa. These polyamides had glass transition temperatures between 203–268°C and 10% mass loss temperatures were recorded in the range of 456–472°C in nitrogen and 453–470°C in air atmosphere.  相似文献   

4.
A series of poly(benzylidene‐ether)esters containing a photoreactive benzylidene chromophore in the main chain were synthesized from 2,6‐bis(4‐hydroxy‐3‐methoxybenzylidene)cyclohexanone (BHMBCH) with various aliphatic and aromatic diacid chlorides by an interfacial polycondensation technique. The intrinsic viscosity of the synthesized homo and copolymers determined by Ubbelohde viscometer was found to be 0.12 to 0.17 dL/g. The molecular structure of the monomer and polymers was confirmed by FT‐IR, 1H NMR, and 13C NMR spectral analyses. These polymers were studied for their thermal stability and photochemical properties. Thermal properties were evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). It was found that the polymers were stable up to 280 °C and start degrading thereafter. Increase in acid methylene spacer length decreased the thermal stability. The self‐extinguishing property of the synthesized polymers was studied by calculating the limiting oxygen index (LOI) value using a Van Krevelen's equation. The influence of the length of methylene spacer on phase transition was investigated using DSC and odd‐even effect has been observed. Hot‐stage optical polarizing microscopic (HOPM) study showed that most of the polymers exhibited birefringence and opalescence properties. The photolysis of liquid crystalline poly(benzylidene‐ether)esters revealed that α,β‐unsaturated ketone moiety in the main chain dimerises through 2π + 2π cycloaddition reaction to form a cyclobutane derivative and leads to crosslinking. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
By heating with iron powder at 120–150° some γ-bromo-α, β-unsaturated carboxylic methyl esters, and, less smothly, the corresponding acids, were lactonized to Δ7alpha;-butenolides with elimination of methyl bromide. The following conversions have thus been made: methyl γ-bromocrotonate ( 1c ) and the corresponding acid ( 1d ) to Δα-butenolide ( 8a ), methyl γ-bromotiglate ( 3c ) and the corresponding acid ( 3d ) to α-methyl-Δα-butenolide ( 8b ), a mixture of methyl trans- and cis-γ-bromosenecioate ( 7c and 7e ) and a mixture of the corresponding acids ( 7d and 7f ) to β-methyl-Δα-butenolide ( 8c ). The procedure did not work with methyl trans-γ-bromo-Δα-pentenoate ( 5c ) nor with its acid ( 5d ). Most of the γ-bromo-α, β-unsaturated carboxylic esters ( 1c, 7c, 7e and 5c ) are available by direct N-bromosuccinimide bromination of the α, β-unsaturated esters 1a, 7a and 5a ; methyl γ-bromotiglate ( 3c ) is obtained from both methyl tiglate ( 3a ) and methyl angelate ( 4a ), but has to be separated from a structural isomer. The γ-bromo-α, β-unsaturated esters are shown by NMR. to have the indicated configurations which are independent of the configuration of the α, β-unsaturated esters used; the bromination always leads to the more stable configuration, usually the one with the bromine-carrying carbon anti to the carboxylic ester group; an exception is methyl γ-bromo-senecioate, for which the two isomers (cis, 7e , and trans, 7d ) have about the same stability. The N-bromosuccinimide bromination of the α,β-unsaturated carboxylic acids 1b , 3b , 4b , 5b and 7b is shown to give results entirely analogous to those with the corresponding esters. In this way γ-bromocrotonic acid ( 1 d ), γ-bromotiglic acid ( 3 d ), trans- and cis-γ-bromosenecioic acid ( 7d and 7f ) as well as trans-γ-bromo-Δα-pentenoic acid ( 5d ) have been prepared. Iron powder seems to catalyze the lactonization by facilitating both the elimination of methyl bromide (or, less smoothly, hydrogen bromide) and the rotation about the double bond. α-Methyl-Δα-butenolide ( 8b ) was converted to 1-benzyl-( 9a ), 1-cyclohexyl-( 9b ), and 1-(4′-picoly1)-3-methyl-Δα-pyrrolin-2-one ( 9 c ) by heating at 180° with benzylamine, cyclohexylamine, and 4-picolylamine. The butenolide 8b showed cytostatic and even cytocidal activity; in preliminary tests, no carcinogenicity was observed. Both 8b and 9c exhibited little toxicity.  相似文献   

6.
Model reaction of bis(4-nitrophenyl) β-truxinate (BNPT) with aliphatic amines proceeded quantitatively at room temperature. Accordingly, polycondensation of BNPT with various diamines was carried out at room temperature or 80°C. During the polycondensation of BNPT with diamines, the precipitation of polymer or the observed gelation of polymerization solution occurred, which may limit the molecular weight of the polymer. On the other hand, the reaction of BNPT with 1,3-(4-piperidyl)propane (DPP) proceeded homogeneously to give the polymer with relatively high molecular weight, and the obtained polyamide (P-1e) showed excellent solubility in many solvents. The study of TG and DTA indicated that the obtained polymers were stable at lower temperature than around 270°C. The polymer prepared from the polycondensation of BNPT with hexamethylenediamine showed melting point and decomposition due to the imidation at 282°C. The photochemical reaction of these polymers was carried out in the film state. The irradiation of 254 nm light caused an absorption at 272 nm to appear and the molecular weight to decrease. This meant that the scission of cyclobutane ring in the main chain occurred to give cinnamamide structures. Also, the absorption at 272 nm decreased by the irradiation of 302.5 nm light. However, the UV spectrum of irradiated polymer did not agree with that of the original polymer. These results suggested that the dimerization of the resulting cinnamamide moieties occurred in the competition of their transcis-isomerization. On the other hand, the rate of scission of cyclobutane ring of P-1e was faster than that of the corresponding polyamide containing α-truxillamide structure.  相似文献   

7.
Copolymers of 1,2,2,6,6-pentamethyl-4-piperidinyl m-isopropenyl-α,α-dimethylbenzyl carbamate (CB) with styrene (S) and with methyl methacrylate (MMA) were synthesized using AIBN as initiator. S–CB copolymers made from feed ranging from 0.45–0.94 mole fractions S and MMA-CB copolymers made from feed of 0.34–0.88 mole fractions MMA were used to determine the monomer reactivity ratios r1 and r2. The structure of S–CB copolymers was inferred to be mainly of a random nature and in the MMA–CB copolymerization system there is a stronger tendency to form alternating copolymers. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Homogeneous asymmetric hydrogenation of a wide range of methyl and tert-butyl (Z)-2-(acylamino)-3-(heteroaryl)acrylates (see 1a–f and 2a–d, f, g , resp.) catalyzed by diphosphinerhodium catalysts was studied for the synthesis of enantiomerically pure 3-furyl-, 3-thienyl-, and 3-pyrrolylalanines (see 3a–f , and 4a–d, g ; Scheme 1). The precursors, the (Z)-α-amino-α,β-didehydro esters 1a–f and 2a–d, f, g were prepared in high yields using the phosphorylglycine-ester method (Scheme 1). Isomerically pure (Z)-α-amino-α,β-didehydro esters were required to obtain the highest enantiomeric excesses (ee's) in the asymmetric hydrogenation, and the tert-butyl-ester strategy was beneficial in terms of both getting pure (Z)-α-amino-α,β-didehydro esters and obtaining high ee's in the hydrogenation. Finally, in contrast to the methyl-ester series, deprotection of the tert-butyl esters 4a–d, g was easily performed using CF3CO2H without any racemization.  相似文献   

9.
Fibers of benzoxazole–imide ordered copolymers were prepared by cyclodehydrating the amide–phenol units of precursor polyamide–o-hydroxyimide fibers at 375°C in nitrogen. The precursor polyamide–o-hydroxyimides were obtained by the reaction of 3,3′-dihydroxybenzidine with diacid chlorides containing preformed imide rings. The benzoxazole–imide fibers are very thermally stable, especially with respect to retention of tensile properties after heat aging in air. For example, the benzoxazole–imide fibers after heating aging in air for 35 days retained 75% or more of their original tenacities and 50% or more of their original elongations to break. The original fibers did not have high tenacities, probably because of the rather extreme thermal treatment required to cyclodehydrate the amide–phenol units of the precursor fiber. The ultraviolet light stability of one benzoxazole–imide fiber was outstanding for a fiber of the polyheterocycle type: there was no loss in strength or elongation after 140 hr of exposure in a Fade-Ometer. Fibers of ordered amide–imide polymers based on the same imide-containing diacid chlorides used for the benzoxazole–imide polymers were also prepared. They were substantially less thermally stable than their benzoxazole–imide fiber counterparts, as expected.  相似文献   

10.
New optically active monomers L -[α-(N-p-acryloxybenzoyl)alanine ethyl esters] (I) and their polymers were synthesized. The title monomers (I) were prepared by the reaction of 1-p-acryloxybenzoyloxy-4-chlorobenzotriazoles (II) with L -alanine ethyl ester hydrochloride, by aminolysis of the active monoester. The new typical active ester (II) was synthesized by the N-hydroxy compound active-ester methods in excellent yield. Before the synthesis of the optically active monomers was carried out, a model study of the aminolysis of the two active esters was performed.  相似文献   

11.
α‐Methyl glutamic acid (L ‐L )‐, (L ‐D )‐, (D ‐L )‐, and (D ‐D )‐γ‐dimers were synthesized from L ‐ and D ‐glutamic acids, and the obtained dimers were subjected to polycondensation with 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and 1‐hydroxybenzotriazole hydrate as condensation reagents. Poly‐γ‐glutamic acid (γ‐PGA) methyl ester with the number‐average molecular weights of 5000∼20,000 were obtained by polycondensation in N,N‐dimethylformamide in 44∼91% yields. The polycondensation of (L ‐L )‐ and (D ‐D )‐dimers afforded the polymers with much larger |[α]D | compared with the corresponding dimers. The polymer could be transformed into γ‐PGA by alkaline hydrolysis or transesterification into α‐benzyl ester followed by hydrogenation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 732–741, 2001  相似文献   

12.
Arylsulfonyl chlorides were successfully used as a new condensing agent for the synthesis of polyaryl esters by the direct polycondensation of aromatic dicarboxylic acids and bisphenols. High-molecular-weight polymers (Mw = 84,000) were prepared by reacting dicarboxylic acids with the sulfonyl chlorides in pyridine in the presence of LiCI, followed by treating with a pyridine solution of bisphenols. The polycondensation was significantly affected by factors, such as, the kind of arylsulfonyl chlorides, its amount, the conditions of initial reaction of the acids with the sulfonyl chlorides, the amounts of LiCI added, and dropwise addition of bisphenols.  相似文献   

13.
Catalytic actions of various additives were studied in the polycondensation of di(4-nitrophenyl) isophthalate with bis(4-aminophenyl) ether in N-methyl-2-pyrrolidone, and 1-hydroxybenzotriazole (HOBt) was found to be a highly effective catalyst that yielded high-molecular-weight polyamide. In addition to the polycondensation of the 4-nitrophenyl ester, the polymerization of negatively substituted phenyl esters like di(2,4,5-trichlorophenyl) isophthalate was also accelerated by HOBt. For the HOBt-catalyzed aminolysis of esters a bifunctional concerted mechanism that involves an eight-membered transition state was proposed.  相似文献   

14.
Novel one-pot syntheses of sulfur-containing polymers from a bifunctional five-membered cyclic dithiocarbonate ( 1a ) were carried out. Polythiourethanes were obtained by the polyaddition of 4,4′-methylenebis(phenyl isocyanate), tolylene 2,6-diisocyanate, and hexamethylene diisocyanate with a dithiol ( 2a ) obtained by the reaction of 1a and benzylamine under mild conditions. Polythioesters were also obtained by the polycondensation of terephthaloyl and succinyl chlorides with 2a . Further, polythioether was obtained by the polycondensation of α,α′-dibromo-p-xylene with 2a . © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1189–1195, 1998  相似文献   

15.
Several C(α),O-dilithiooximes of aromatic ketones were condensed with aroyl chlorides. The presumed diacyl intermediates were not isolated, and the reaction mixtures containing them were acid-cyclized to give 4-acylisoxazoles in 22–62% yield.  相似文献   

16.
Ordered aromatic polyamides and copolyamides were prepared by the polycondensation of terephthaloyl and isophthaloyl dichlorides with symmetrical diamines containing preformed amide linkages derived from unsymmetrical methyl—substituted aromatic diamines at low temperature. Thermal properties and solubilities of the ordered polyamides were compared with those of the corresponding random polyamides. There was little difference between thermal stabilities of the ordered polyamide and the corresponding random one, while the former was less soluble in organic solvents than the latter, depending on the extent of hydrogen bonding of the amide groups. The thermal stability of the alternating copolyamides containing both terephthaloyl and isophthaloyl groups as acid components was less than that of the corresponding homopolymers having either a terephthaloyl or an isophthaloyl group, and the solubility of the former resembled that of the corresponding ordered homopolysiophthalamides in accord with the extent of hydrogen bonding of the amide groups in both polymers.  相似文献   

17.
Poly(α-isobutyl-L -aspartate) was prepared by the polycondensation reaction of p-nitrophenyl ester of α-isobutyl-L -aspartate and the conformation of the poly(β-amino acid) was investigated by X-ray diffraction, polarized infrared, circular dichroism (CD), optical rotatory dispersion (ORD), and NMR spectroscopy. α-Isobutyl β-p-nitrophenyl-L -aspartate hydrochloride and hydrobromide were used as monomers and dimethylformamide, chloroform, and chlorobenzene, as solvents. A high-molecular-weight polymer with [η] 1.0 dl/g (dichloroacetic acid, 25°C) was formed in the polymerization of the hydrochloride in chloroform at 25°C. The X-ray diagram and polarized infrared spectrum of the stretched polymer film obtained from a chloroform solution suggested a cross-β-form as the most probable structure in the solid state. The CD spectra of the polymer in a 2,2,2-trifluoroethanol (TFE) solution and its film cast from the solution showed a peak at 205 nm and a trough at 190 nm which were assigned to a β-structure. The polymer was associated in chloroform. The NMR and ORD spectra in chloroform were similar to those in TFE, which suggests that the polymer also exists in the β-structure in chloroform. The addition of small amounts of dichloroacetic acid and sulfuric acid to chloroform and TFE solutions, respectively, destroyed the β-structure. A random copolymer of α-isobutyl-L -aspartate with β-alanine was also prepared by polycondensation reaction. The copolymer apparently did not form an ordered structure in the solid state or in solution.  相似文献   

18.
A series of novel polyamide‐imides III containing 2,6‐bis(phenoxy)naphthalene units were synthesized by 2,6‐bis(4‐aminophenoxy)naphthalene and various bis(trimellitimide)s in N‐methyl‐2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents through direct polycondensation. The polymers were obtained in quantitative yield with inherent viscosities up to 1.53 dL/g. Most of the polymers showed good solubility in NMP, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide and could be solution‐cast into transparent, flexible, and tough films. The films had tensile strengths of 84–111 MPa, elongations at break of 8–33%, and initial moduli of 2.2–2.8 GPa. Wide‐angle X‐ray diffraction revealed that most polymers III were amorphous. The glass‐transition temperatures of some of the polymers could be determined by differential scanning calorimetry traces, recorded at 247–290 °C. The polyamide‐imides exhibited excellent thermal stabilities and had 10% weight loss at temperatures in the range of 501–575 °C under nitrogen atmosphere. They left more than 57% residue even at 800 °C in nitrogen. A comparative study of some corresponding polyamide‐imides is also presented. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2591–2601, 2001  相似文献   

19.
To develop polycondensation methods for poly(α‐amino acid)s, we describe a first examination to use yttrium triflate as a Lewis acid for polycondensation of α‐amino acid esters. In the absence of Lewis acid, no polycondensation of 2‐methoxyphenyl glycinate ( 1b ) at room temperature proceeded. While the polycondensation of 1b was carried out with 5 mol % yttrium triflate, a condensation product of glycine was obtained in 16% yield. Although polycondensation of 4‐nitrophenyl L ‐leucinate ( 1c ) and 4‐nitrophenyl L ‐valinate ( 1d ) were also promoted with 5 mol % yttrium triflate, the condensation products of both α‐amino acid esters were obtained in only a few percent yield. When 1d was polymerized in the presence of 100 mol % yttrium triflate, high molecular weight poly(L ‐valine) was obtained in 91% yield. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4731–4735, 2006  相似文献   

20.
The novel diol monomer, α,α,α′,α′-tetramethyl-1,4-tetrafluorobenzenedimethanol, has been synthesized by a convenient route which involves the addition of acetone to 1,4-dilithiotetrafluorobenzene and can be purified by washing with hexanes. It does not directly undergo condensation polymerizations with diacid chlorides. Its disodium salt, prepared by its reaction with sodium hydride, similarly fails to undergo such polymerizations readily. However, the dilithium salt, prepared in situ by the reaction of the title diol with 2 equiv of n-butyllithium in tetrahydrofuran, is suitable for the preparation of various classes of condensation polymers. Four polyesters and one polycarbonate derived from the reactions of the dilithium salt of the diol with adipoly dichloride, sebacoyl dichloride, isophthaloyl dichloride, terephthaloyl dichloride, and phosgene and two polyurethanes derived from its reactions with tolylene-2,4-diisocyanate and methylene-di-1,4-phenyl diisocyanate were prepared. Each was fully characterized by GPC, NMR, IR, and UV-visible spectroscopies, and the results of these studies are reported herein. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号