首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-level ab initio calculations have been made for fluoromethylamine to study structural and energetic effects of the relative orientation of the N lone pair to the C? F bond. The anti-conformer (N lone pair anti-planar to the C? F bond) corresponds to the global energy minimum. It has the longest C? F distance, the shortest C? N distance, and is 7.5 kcal·mol?1 more stable than the related perpendicular conformation (lone pair perpendicular to the C? F bond). The syn-conformation also shows hallmarks of the anomeric effect: long C? F bond, short C? N bond, and energetic stability when allowance is made for the two pairs of eclipsed hydrogens. The transition state for N inversion is close to the syn-structure; rotation about the C? N bond is strongly coupled with this inversion process. Small bond distance changes of ca. 0.02 Å between parallel and perpendicular conformations are associated with dissociation energy differences of ca. 30 kcal·mol?1. Various criteria for assessing the strength of the anomeric effect are discussed.  相似文献   

2.
Novel aza‐diisoindolylmethene and their BF2‐chelating complexes (benzo‐fused aza‐BODIPYs) were synthesized on a large scale and in a facile manner from phthalonitrile in tBuOK‐DMF solution. The unique asymmetric donor–π‐acceptor structure facilitates B? N bond detachment in the presence of trifluoroacetic acid (TFA) in dichloromethane, resulting in sharp color change from red to colorless, with over 250 nm hypsochromic shift in the absorption maximum. This colorimetric process can be reversed by adding a very small amount of proton‐accepting solvents or compounds. A 1H and 11B NMR spectroscopy study and also density functional theory (DFT) calculations suggest that TFA‐induced B? N bond cleavage may disrupt the whole π‐conjugation of the BODIPY molecule, resulting in significant colorimetric behavior.  相似文献   

3.
Two series of new merocyanine dyes have been synthesised and the dependence of their electronic structure on substituents and solvents has been studied by NMR spectroscopy, by using both the NMR 13C chemical shifts between adjacent C atoms in the polymethine chain and the 3J(H,H) coupling constants for trans‐vicinal protons. The widely used valence bond (VB) model based on two contributing structures cannot account theoretically for the observed alternating π‐electron density in the polymethine chain. In addition, the prediction of zero‐π‐bond order alternation (or zero‐bond length alternation) by this model is also incorrect. However, the results are consistent with the predictions of a qualitative VB model which considers the resonance of a positive charge throughout the whole polymethine chain. Based on this model and the Franck‐Condon principle the effect of substituents and solvents on the fine structure of the electronic spectra of these dyes can be explained as vibronic transitions from the vibrational state v=0 to v′, where v is the vibrational quantum number of the totally symmetric C?C valence vibration of the polymethine chain in the electronic ground state and v′ is that in the electronic excited state. In contrast, neither the effects of substituents or solvents on the electronic structure of merocyanines and their electronic spectra can be accounted for by the simple two state VB model.  相似文献   

4.
DFT calculations have been performed on the palladium‐catalyzed carboiodination reaction. The reaction involves oxidative addition, alkyne insertion, C?N bond cleavage, and reductive elimination. For the alkylpalladium iodide intermediate, LiOtBu stabilizes the intermediate in non‐polar solvents, thus promoting reductive elimination and preventing β‐hydride elimination. The C?N bond cleavage process was explored and the computations show that PPh3 is not bound to the Pd center during this step. Experimentally, it was demonstrated that LiOtBu is not necessary for the oxidative addition, alkyne insertion, or C?N bond cleavage steps, lending support to the conclusions from the DFT calculations. The turnover‐limiting steps were found to be C?N bond cleavage and reductive elimination, whereas oxidative addition, alkyne insertion, and formation of the indole ring provide the driving force for the reaction.  相似文献   

5.
Summary The1H and13C NMR spectra of the lupin alkaloidangustifoline 1 in four solvents (cyclohexane-d12, CDCl3, CD3CN, and C6D6) were assigned using 2D H,H and H,C COSY and 2D J-resolved spectra. The torsional HCCH angles calculated from the vicinalJ HH coupling constants are essentially in agreement with those expected for the deformed all-chair conformation withendo oriented N(12)-H bond, reported earlier for1 in the solid state. Some arguments seem to point, however, to a small contribution of other conformations: with ring A deformed in another direction, deformed all-chair withexo oriented N(12)-H bond and/or a conformation with ring C in the boat form.Lupin Alkaloids, part 7  相似文献   

6.
1H- and 13C-NMR spectra of a series of nonafulvenes 1 have been investigated. Most nonafulvenes are olefinic molecules with alternating bond lengths, their nine-membered ring deviating strongly from planarity. The 10-monosubstituted nonafulvenes contain 2 sterically different ring segments with a nearly planar (E)-diene system consisting of C(7), C(8), C(9), C(10), and R. Substituents R are influencing C(9) > C(7) > C(5). In symmetrically substituted nonafulvenes a fast process equilibrating olefinic conformers is operating so that pairs of ring protons and ring C-atoms are equivalent and only average substituent effects are observed for C(9) > C(7,2). 1H- and 13C-NMR chemical shifts are not significantly influenced by changes of solvent or temperature. On the other hand, new 13C- and 1H-NMR experiments completing previous investigations by Hafner and Tappe confirm that NMR spectra of 10,10-bis (dialkylamino)nonafulvenes are strongly dependent on solvent polarity and temperature. At ambient temperature and in unpolar solvents, nonplanar conformers are predominant, their spectral data fitting into the series of other nonafulvenes. At low temperature and/or in polar solvents, dipolar conformers are favoured which are characterised by charge separation and a planarised (but not necessarily completely planar) nine-membered ring with negative excess charge. The spectroscopic behaviour of nonafulvenes is reasonably explained by a qualitative scheme (Fig. 7) which is based on a model proposed by Boche for nonafulvenolates.  相似文献   

7.
The room temperature [13C]NMR spectrum of 2,4-bis(N-pyrrolidinyl)-6-chloro-s-triazine shows doubled signals for the pyrrolidine rings, which suggests restricted rotation about the Ar-C—N bond. The rotational barrier around this bond was determined by [13C]dynamic NMR (DNMR) spectra run at different increasing temperatures and also by the PM3 Hamiltonian contained in the MOPAC package. The values thus obtained, 16.6 and 13.6 kcal mol–1, respectively, are in good agreement.  相似文献   

8.
The pulse sequence INEPT was used to obtain proton-coupled 15N-NMR spectra in natural isotope abundance for enamines substituted in 2-position with electron-with-drawing groups. The chemical shifts and coupling constants are discussed in terms of their relationship to structural features such as multiple N-alkyl substitution, double-bond configuration, H-bonding, N-lone-pair delocalization within the conjugated system, and steric effects. It is concluded that 15N chemical shifts are a sensitive probe for local structural modifications at the N-atom and conformational changes in a remote part of a conjugated molecule, while one-bond N,H-coupling essentially reflects N-hybridization and subtle local geometric distortions. Stereospecific three-bond N,H spin coupling to olefinic protons (4.0 ± 0.2 Hz) has been found a characteristic feature of (Z)-isomers in all investigated compounds, whereas two-bond coupling to olefinic protons (2J(N,H) = 0.5 to 5 Hz) is observed in (E)-isomers. The sensitivity to solvents and steric properties of remote substituents renders geminal coupling a useful probe for studying electronic effects in the C? N bond.  相似文献   

9.
Cycloadditions of nitrile oxides to N-mono and unsubstituted β-aminocinnamonitriles are remarkably affected by the hydrogen acceptor ability of the solvent. Addition to C ? N bond predominates in non and weak hydrogen bond acceptor solvents because of the assistance of favourable hydrogen bonding effects. In strong hydrogen bond acceptor solvents the assistance is fully relieved and the regular addition to C ? C bond becomes prevalent.  相似文献   

10.
In the 13C NMR spectra of methylglyoxal bisdimethylhydrazone, the 13C‐5 signal is shifted to higher frequencies, while the 13C‐6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the 1H‐6 chemical shift and 1J(C‐6,H‐6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the –CH═N– bond does not change. This paradox can be rationalized by the C–H?N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum‐chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ(1H‐6) and 1J(C‐6,H‐6) parameters. The effect of the C–H?N hydrogen bond on the 1H shielding and one‐bond 13C–1H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The 1H, 13C and 15N chemical shifts of the 2‐ and 8‐(CH3)2N groups attached to the –C(CH3)═N– and –CH═N– moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8‐(CH3)2N group conjugate effectively with the π‐framework, and the 2‐(CH3)2N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N‐2– and N‐8– nitrogen lone pairs to the π‐framework varies, which affects the 1H, 13C and 15N shieldings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The mechanism of [{RuCl2(p‐cymene)}2]‐catalyzed oxidative annulations of isoquinolones with alkynes was investigated in detail. The first step is an acetate‐assisted C? H bond activation process to form cyclometalated compounds. Subsequent mono‐alkyne insertion of the Ru? C bonds of the cyclometalated compounds then takes place. Finally, oxidative coupling of the C? N bond of the insertion compounds occurs to afford Ru0 sandwich complexes that undergo oxidation to regenerate the catalytically active RuII complex with the copper oxidant and release the desired dibenzo[a,g]quinolizin‐8‐one derivatives. All of the relevant intermediates were fully characterized and determined by single crystal X‐ray diffraction analysis. The [{RuCl2(p‐cymene)}2]‐catalyzed C? H bond functionalization of isoquinolones with alkynes to synthesize dibenzo[a,g]quinolizin‐8‐one derivatives through C? H/N? H activation was also demonstrated.  相似文献   

12.
Hindered rotation in two o-substituted N,N-dimethylthiobenzamides was investigated by variable temperature 1H NMR spectroscopy. For one compound, the enthalpies and entropies of activation for (i) thioamide group rotation around the Ar? C bond and (ii) dimethylamino group rotation around the C? N bond were obtained by full line shape analysis; a possible coupling between the two processes is discussed. A new simple method has also been applied to the analysis of dimethylamino exchange and results are in complete agreement with the full line shape analysis with somewhat better precision.  相似文献   

13.
The title compound is insoluble in aprotic solvents and decomposes in protic ones. Its crystal structure consists of discrete molecules with non-crystallographic C30-symmetry and a transannular dative B? N bond (1.620(3) (Å). The molecules pack tightly (density 1.804 g cm?2) interacting via O…C contacts between carbonyl groups (2.92–3.05 Å)). The atoms show small vibrational motion which may be interpreted in terms of a rigid body model. Distances and angles obtained at 293 and 110 were corrected for effects of rigid body motion and do not show significant differences.  相似文献   

14.
β-lactam antibiotics, which are used to treat infectious diseases, are currently the most widely used class of antibiotics. This study focused on the chemical reactivity of five- and six-membered ring systems attached to the β-lactam ring. The ring strain energy (RSE), force constant (FC) of amide (C−N), acylation transition states and second-order perturbation stabilization energies of 13 basic structural units of β-lactam derivatives were computed using the M06-2X and G3/B3LYP multistep method. In the ring strain calculations, an isodesmic reaction scheme was used to obtain the total energies. RSE is relatively greater in the five-(1a–2c) compared to the six-membered ring systems except for 4b, which gives a RSE that is comparable to five-membered ring lactams. These variations were also observed in the calculated inter-atomic amide bond distances (C−N), which is why the six-membered ring lactams C−N bond are more rigid than those with five-membered ring lactams. The calculated ΔG# values from the acylation reaction of the lactams (involving the S−H group of the cysteine active residue from L,D transpeptidase 2) revealed a faster rate of C−N cleavage in the five-membered ring lactams especially in the 1–2 derivatives (17.58 kcal mol−1). This observation is also reflected in the calculated amide bond force constant (1.26 mDyn/A) indicating a weaker bond strength, suggesting that electronic factors (electron delocalization) play more of a role on reactivity of the β-lactam ring, than ring strain.  相似文献   

15.
The photochemical behaviour of the title compound 2c was investigated in various solvents. In benzene and t-butanol photodimerization affords the cis-anti-cis HH- and HT-dimers (H = head, T = tail). In acetonitrile, cyclohexane and 2-propanol, photoreduction competes with photodimerization. The photoreduction products are hydrodimers, solvent adducts and the saturated lactone (the 2H-reduction product). In acetonitrile and cyclohexane H-abstraction by the β-C-atom of the C?C bond is the predominant reduction process. In 2-propanol, solvent adducts to the α- and β-C-atoms are formed in equal amounts. In xanthone-sensitized irradiations the ratio of HH- to HT-dimer is the same as on direct irradiation and the relative rates of conversion of 2c to products in different solvents are also similar under both conditions.  相似文献   

16.
N-Mono and N,N-dialkyl/diarylbarbituric acids exist in solution as a single tautomer. The 13C nmr spectroscopy shows that they are present in the triketo form in a number of polar and non-polar solvents. 2-Thiobarbituric acid derivatives, however, show extensive tautomerization. Their 13C chemical shift assignments were achieved by utilizing models 11a , 11c , 12b and 12d and from which relative tautomer distribution ratios were determined. These ratios were correlated with the dielectric constant of the various solvents (?). Thio-barbituric acids also formed adducts with solvents having carbonyl groups, characteristic observed only with barbiturates possessing the thione or thiophenolic group. 6-Amino and 6-methyluracils and thiouracils exist in DMSO solution as stable “ene” forms as do orotic acid, 24 , and its thio analogue 25. Compound 25 undergoes disproportionantion and tautomerization when heated or on prolonged standing in solution. Literature contradictions regarding the structure of “4,6-dihydroxypyrimidine,” 26 , were resolved and its tautomers in solution correctly assigned by 13C nmr. Anions of barbiturics and related systems exist in one of the two possible types A and B, depending on whether ring nitrogens are substituted (type A), or not (type B). Rapid H/D exchange at C5 was evident from C-deuterium coupling. The redistribution of charge through C4(C6) carbonyl groups shown by 13C shifts of carbonyl carbon atoms of up to 10 ppm as compared to the CO carbons of the neutral species was evident.  相似文献   

17.
The barriers to rotation about the C? N bond in eighteen substituted N,N-dimethylbenzamides have been determined by complete line shape analysis of the NMR spectra of the N,N-dimethyl protons. The barriers have been correlated with the substituent constants σ and σ+. It has been shown that polar solvents increase the barrier in N,N-dimethylbenzamide. Acid catalysis of rotation about the amide C? N bond in N-(p-N,N-dimethylcarboxamidobenzyl)-pyridinium bromide has been investigated. 18O exchange studies show that catalysis is due to N-protonation rather than the formation of a tetrahedral intermediate. The rate of rotation is a function of the Hammett acidity function, H0, and the water activity, and it is shown that proton exchange between the N- and O-protonated species involves the intermediacy of a water molecule. The differences in chemical shifts for the non-equivalent N, N-dimethyl groups of the benzamides are also a function of the substituents. Possible explanations of this phenomenon are discussed.  相似文献   

18.
The Photochemistry of Conjugated γ,δ-Epoxy-ene-carbonyl Compounds of the Ionone Series: UV.-Irradiation of α,β-Unsaturated ε-Oxo-γ,δ-epoxy Compounds and Investigation of the Mechanism of the Isomerization of Epoxy-enones to Furanes On 1n, π*-excitation (λ ≥ 347 nm; pentane) of the enonechromophore of 3 , three different reactions are induced: (E/Z)-isomerization to give 13 (7%), isomerization by cleavage of the C(γ)–C(δ) bond to yield the bicyclic ether 14 (36%) and isomerization by cleavage of the C(γ)? O bond to give the cyclopentanones 15 (13%) and 16 (11%; s. Scheme 2). On 1π, π*-excitation (λ = 254 nm; acetonitrile) 13 (14%), 15 (6%), and 16 (6%) are formed, but no 14 is detected. In contrast, isomerization by cleavage of the C(δ)? O bond to give the cyclopentanone 17 (23%) is observed. The reaction 3 → 17 appears to be the consequence of an energy transfer from the excited enone chromophore to the cyclohexanone chromophore, which then undergoes β-cleavage. Irradiation of 4 with light of λ = 254 nm (pentane) yields the analogous products 20 (18%), 21 (9%), 22 (7%), and 24 (7%; s. Scheme 2). Selective 1n, π*-excitation (λ ≥ 280 nm) of the cyclohexanone chromophore of 4 induces isomerization by cleavage of the C(δ)? O bond to give the cyclopentanones 23 (9%) and 24 (44%). Triplet-sensitization of 4 by excited acetophenone induces (E/Z)-isomerization to provide 20 (12%) and isomerization by cleavage of the C(δ)? O bond to yield 21 (26%) and 22 (20%), but no isomerization via cleavage of the C(δ)? O bond. It has been shown, that the presence of the ε;-keto group facilitates C(γ)? C(δ) bond cleavage to give a bicyclic ether 14 , but hinders the epoxy-en-carbonyl compounds 3 and 4 from undergoing cycloeliminations. The activation parameters of the valence isomerization 13 → 18 , a thermal process, have been determined in polar and non-polar solvents by analysing the 1H-NMR. signal intensities. The rearrangement proceeds faster in polar solvents, where the entropy of activation is about ?20 e.u. Opening of the epoxide ring and formation fo the furan ring are probably concerted.  相似文献   

19.
Abstract

A series of N-phenyl-P,P,P-triarylphospha-λ5-azenes (1) as well as their l5N labeled analogs was synthesized. The 13C, 31P, and 15N NMR spectra of this series and those of two other series of related compounds, namely triarylphosphines (2) and triarylphosphine oxides (3), were measured and are reported. Many satisfactory correlations using the mono-substituent parameter (MSP) and the Taft dual-substituent parameter (DSP) treatments with the 13C substituent chemical shifts (SCS), 31P SCS, 15N SCS and the one bond P-N, P-C and C-N coupling constants were observed and will be discussed. Thus, for example, the 31P and 15N chemical shifts in 1 correlated with [sgrave]?with negative slopes while the 31P chemical shifts in 3 correlated with those in 1 with a slope of 2.0. The 13C chemical shifts in 1 correlated excellently with the corresponding ones in 3 with slopes very close to unity. The substituent effects on the chemical shifts of the various nuclei were shown to be mainly due to changes in the charge distribution on those nuclei. In 1 the one bond P-N and P-C coupling constants correlated with [sgrave]p and [sgrave]R respectively. The one bond P-C coupling constants of 1 correlated quite well with those of 3 with a slope of 0.93 while the corresponding correlation of 1 with 2 was quite poor. Taft DSP treatment of 1JPCin 1 and 3 were quite similar, ρI and ρR were both negative and ρR was much larger than ρI. Series 2 showed behavior which was different from that shown by 1 and 3 but similar to that shown by other systems with a lone electron pair on the atom bound to the phenyl ring. The substituent effects on the one bond P-N, P-C and C-N coupling constants will be discussed in terms of bonding and hybridization changes between the directly bonded nuclei.  相似文献   

20.
Synthesis and characterization of allyl propenyl‐2‐(4‐derivatives phenylazo)butan‐3‐one (HLn) are described. The monomers obtained contain N?N and carbonyl functional groups in different positions with respect to the allyl group. This structural difference affects the stereochemical structure of the uranyl polymer complexes prepared by the direct reaction of uranyl acetate with the monomers. The polymer complexes are characterized by elemental analyses, 1H and 13C NMR, electronic and vibrational spectroscopy and other theoretical methods. The bonding sites of the hydrazone are deduced from IR and NMR spectra and each of the ligands were found to bond to the UO22+ ion in a bidentate fashion. The monomers obtained contain N?N and carbonyl functional groups in different positions with respect to the allyl group. IR spectra show that the allyl azo homopolymer (HLn) acts as a neutral bidentate ligand by coordinating via the two oxygen atom of the carbonyl group, thereby forming a six‐membered chelating ring. The υ3 frequency of UO22+ has been shown to be a good molecular probe for studying the coordinating power of the ligands. The υ3‐values of UO22+ from IR spectra have been used to calculate the force constant, FUO (in 10?8 N/Å) and the bond length RUO (in Å) of the U? O bond. We adopted a strategy based upon both theoretical and experimental investigations. The theoretical aspects are described in terms of the well‐known theory of 5d–4f transitions. The necessary structural data (coordination geometries and electronic structures) are determined from a framework for the modeling of novel polymer complexes. The Wilson, G. F. matrix method, Badger's formula and the Jones and El‐Sonbati equations were used to determine the stretching and interaction force constants from which the U? O bond distances were calculated. The bond distances of these complexes were also investigated. The effect of Hamett's constant is also discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号