首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Conventional transition-state theory is used for extrapolating rate coefficients for reactions of O atoms with alkanes to temperatures above the range of experimental data. Expressions are developed for estimating structural properties of the activated complex necessary for calculating enthalpies and entropies of activation. Particular attention is given to the problem of the effect of the O atom adduct on the internal rotations in the activated complex. Differences between primary, secondary, and tertiary attack are discussed, and the validity of representing the activated complexes of all O + alkane reactions by a fixed set of vibrational frequencies and other internal modes is evaluated. Experimental data for reactions of O atoms with 15 different alkanes (CH4, C2H6, C3H8, C4H10, C5H12, C6H14, C7H16, C8H18, i–C4H10, (CH3)4C, (CH3)2CHCH(CH3)2, (CH3)3CC(CH3)3, c–C5H10, c–C6H12, c–C7H14) are reviewed. The following approximate expressions for ΔS?(298) and E(298), the entropy and energy of activation, respectively, are consistent with the experimental data and with the calculations: where nC = number of carbon atoms in the alkane and nH = the number of “equivalent” H atoms. Using the conventional transition state theory expression, k(298) = 1015.06 exp(ΔS?/R) exp(–E(298)/298R) L mol?1s?1, one then obtains: These expressions agree with experimental values within a factor approximately 2 for alkanes larger than C3H8.  相似文献   

2.
Hydrogen, cycloalkene, and bicycloalkyl were found to be the principal products which account for ≈?97% of all products formed in the gas-phase radiolysis of water vapor containing low concentrations of cycloalkanes. From the ratios of cycloalkene-to-bicycloalkyl yields extrapolated to the zero dose, the self- and cross-disproportionation-to-recombination rate constant ratios Δ = kd/kc were determined for the following 12 reactions: Δ(c-C5H9, c-C5H9) = 0.73; Δ(c-C5D9, c-C5D9) = 0.58; Δ(c-C6H11, cC6H11) = 0.59; Δ(c-C6D11, c-C6D11) = 0.46; Δ(c-C5H9, c-C6H11) = 0.28; Δ(c-C5D9, c-C6H11) = 0.28; Δ(c-C5H9, c-C6D11) = 0.24; Δ(c-C5D9, c-C6D11) = 0.24; Δ(c-C6H11, c-C5H9) = 0.33; Δ(c-C6H11, c-C5D9) = 0.25; Δ(c-C6D11, c-C5H9) = 0.35; and Δ(c-C6D11, c-C5D9) = 0.28, where in the case of the cross-disproportionation the symbol Δ(R1,R2) is used to represent kd/kc for the disproportionation in which radical R1 captures a hydrogen (deuterium) atom from radial R2. The geometrical mean rule holds in the cross-combination reactions of cyclopentyl and cyclohexyl radicals. The kinetic isotope effect in the disproportionation reaction was determined as 1.24 ± 0.06.  相似文献   

3.
The deactivation of I(2P½) by R-OH compounds (R = H, CnH2n+1) was studied using time-resolved atomic absorption at 206.2 nm. The second-order quenching rate constants determined for H2O, CH3OH, C2H5OH, n-C3H7OH, i-C3H7OH, n-C4H9OH, i-C4H9OH, s-C4H9OH, t-C4H9OH, are respectively, 2.4 ± 0.3 × 10−12, 5.5 ± 0.8 × 10−12, 8 ± 1 × 10−12, 10 ± 1 × 10−12, 10 ± 1 × 10−12, 11.1 ± 0.9 × 10−12, 9.8 ± 0.9 × 10−12, 7.1 ± 0.7 × 10−12, and 4.1 ± 0.4× 10−12 cm3 molec−1 s−1 at room temperature. It is believed that a quasi-resonant electronic to vibrational energy transfer mechanism accounts for most of the features of the quenching process. The influence of the alkyl group and its role in the total quenching rate is also discussed. © 1997 John Wiley & Sons, Inc.  相似文献   

4.
Methyl radical reactions with matrix molecules in glasses C2H5OH, (CH2OH)2, n- and i-C3H7OH, n- and i-C4H9OH, n- and i-C5H11OH, C2D5OH, and i-C3D7OD, and the reactions of ?2H5, ?3H7, ?4H9, ?5H11 with methanol glasses have been studied. Alkyl radicals were produced by photolysis of diphenylamine–alkylhalide–alcohol mixtures using ultraviolet light. In all cases the alkyl radical decay follows the law c = c0 exp(-kt). The √t law should not be associated with alkyl radical diffusion in a matrix. A method of processing the kinetics of those reactions in which one paramagnetic species changes into another with the total concentration being constant and the electron spin resonance spectra of both species overlapping, is described.  相似文献   

5.
Treatment of the η1-acetylide complex [(η5-C5H5)(CO)(NO)W---CC---C(CH3)3]Li (4) with 1,2-diiodoethane in THF at −78 °C, followed by the addition of Li---CC---R [R=C(CH3)3, C6H5, Si(CH3)3, 6a6c] or n-C4H9Li and protonation with H2O, afforded the corresponding oxametallacyclopentadienyl complexes (η5-C5H5)W(I)(NO)[η2-O=C(CC---R)CH=CC(CH3)3] (7a7c), 8c and (η5-C5H5)W(I)(NO)[η2-O=C(n-C4H9)CH=CC(CH3)3] (9). The formation of these metallafuran derivatives is rationalized by the electrophilic attack of 1,2-diiodoethane onto the metal center of 4 to form first the neutral complex [(η5-C5H5)(I)(CO)(NO)W---CC---C(CH3)3] (5). Subsequent nucleophilic addition of Li---CC---R 6a6c or n-C4H9Li and a reductive elimination step followed by protonation leads to the products 7a7c and 9. One reaction intermediate could be trapped with CF3SO3CH3 and characterized by a crystal structure analysis. The identity of another intermediate was established by infrared spectroscopic data. The oxametallacyclopentadienyl complex 10 forms in the presence of excess 1,2-diiodoethane through an alternative pathway and crystallizes as a clathrate containing iodine.  相似文献   

6.
The collision-induced dissociation (CID) spectra of five alkylmethyleneimmonium ions (H2C-N+R1R2, (a) R1 = R2 = C2H5, (b) R1 = n-C3H7, R2 = H, (c) R1 = n-C3H7, R2 = CH3, (d) R1 = n-C3H7, R2 = C2H5, (e) R1 = R2 = n-C3H7) are reported and discussed in terms of the mechanism of alkane loss. The most abundant alkane losses result from 2-azaallylic bond cleavages within R1 and R2 leading to daughter ions of m/z 84. Ion d (R1 = n-C3H7, R2 = C2H5) was chosen for a deuterium-labelling study because it exhibited methane loss nearly free from interferences with other fragmentations. The methane lost consists to a great extent (95%) of the methyl moiety of R2. Whereas the methyl moiety obviously stays intact during the fragmentation process, the hydrogen additionally needed originates from all positions of R1 and the double-bonded methylene in an approximately random distribution, suggesting extensive hydrogen migrations preceding the transfer step.  相似文献   

7.
The reactions of ferrocenylketimines [(η5-C5H4CCH3NAr)Fe(η5-C5H5)] (Ar=a variety of substituted phenyls) with methyl-iodide in refluxed dichloromethane followed by reduction with sodium borohydride in absolute ethanol led to [(η5-C5H4CH(CH3)N(CH3)Ar)Fe(η5-C5H5)]. Compound [(η5-C5H4CH(CH3)N(CH3)C6H4Cl-p)Fe(η5-C5H5)] (3d) has been characterized structurally. Compound 3d is monoclinic, space group P21/n, with a=8.908(2) Å, b=13.63(1) Å, c=14.510(3) Å and β=107.03°.  相似文献   

8.
The removal of *UF6 (A state) molecules by selected alkanes has been investigated at 25°C. The following rate constants (units of 1011 l/mol·sec) were evaluated: iso-C4F10, 0.0432 ± 0.0115; n-C4F10, 0.0764 ± 0.020; C2F6, 0.0192 ± 0.0052; CH4, 0.0612 ± 0.0061; C2H6, 3.78 ± 0.60; C3H8, 5.08 ± 0.60; n-C4H10, 5.05 ± 0.78; iso-C4H10, 4.17 ± 1.15; neo-C5H12, 6.59 ± 0.93; CF3? CH3, 0.0385 ± 0.0056; CF2H? CF2H, 0.0729 ± 0.0074; and CF2H? CFH2, 0.149 ± 0.015. The perfluoro-alkane quenching of *UF6 proceeds via a physical mechanism. The other alkane quenching reactions are consistent with a chemical mechanism also contributing in varying degrees which may involve removal of two hydrogens from the alkane.  相似文献   

9.
《Chemical physics》1987,118(3):457-466
The gas-phase clustering reactions Cl (ROH)n−1 + ROH ⇄ Cl (ROH)n with n ⩽ 11 for ROH = H2O, CH3OH, C2H5OH, i-C3H7OH, n-C3H7OH, and t-C4H9OH were measured using a high-pressure mass spectrometer. It seems likely that for CH3OH and C2H5OH, six ligands complete the shell structure and that ligands with n ⩾ 7 belong to the outer shell. The bond energies D(ROH---Cl) increase in the order H2O < CH3OH < C2H5OH < i-C3H7OH < t-C4H9OH < n-C3H7OH. The observed strong bond of n-C3H7OH---Cl may be due to the fact that both the acidic hydrogen atoms in the −OH and terminal −CH3 of n-C3H7OH interact with Cl with the most favorable configuration. For Cl switching reactions, Cl (H2O)n + (ROH)n ⇄ Cl (ROH)n + (H2O)n, the ΔG0n values converge to the values of free energies of transfer of Cl from water to ROH solvent ( = ΔG0n with n → ∞) with n ≈ 7. The observed convergence of ΔG0n is due to compensation of changes in enthalpy and entropy, i.e. both ΔH0n and TΔS0n show increasing divergence from the values of enthalpies and entropies of transfer of Cl from water to ROH solvent, respectively, with n = 1 → 7. This is due to the stronger interactions of ROH with Cl than that of H2O in the inner shell of Cl (ROH)n at the expense of the less favorable entropy changes (less freedom of motion for ligands in the inner shell).  相似文献   

10.
Treatment of RuCl2(PPh3)3 with 6-dimethylaminopentafulvene in THF in the presence of water produced(η5-C5H4CHO) RuCl(PPh3)2, which was reduced by NaBH4 to give the Ru–H···HO dihydrogen bonded complex(η5-C5H4CH2OH) RuH(PPh3)2. The dihydrogen bonded complex(η5-C5H4CH2OH)RuH(PPh3)2 could also be synthesized by the reduction of complex(η5-C5H4CHO)RuH(PPh3)2, which was obtained by the reaction of RuHCl(PPh3)3 with 6-dimethylaminopentafulvene in the presence of water. The analogous dihydrogen bonded osmium complex(η5-C5H4CH2OH)OsH(PPh3)2 was similarly prepared. Single crystal structures and DFT calculations support the presence of intra-molecular H···H interaction, with separations of around 1.9 to 2.0 .  相似文献   

11.
Compounds (Bu4N)[2-B10H9{NH=C(NHR)CH3}] are obtained by reactions of the tetrabutylammonium salt of the [2-B10H9(N≡CCH3)] anion with aliphatic and aromatic primary amines RNH2 (R = n-C3H7, n-C4H9, cyclo-C5H9, C6H5, cyclo-C6H11, n-C6H13, C7H7, C8H8NH2, C6H4NO2, and C18H37) and identified by IR, ESI/MS, and NMR (1H, 11B, and 13C) spectroscopy. The structures of the amidine-type derivatives [2-B10H9{Z-NH=C(NH-cyclo-C5H9)CH3}] and [2-B10H9{Z-NH=C(NH-C7H7)CH3}] are determined by X-ray diffraction.  相似文献   

12.
The C-2—N bond of 2-N,N-dimethylaminopyrylium cations has a partial π character due to the conjugation of the nitrogen lone-pair with the ring. The values of ΔG, ΔH, ΔS parameters related to the corresponding hindered rotation have been determined by 13C NMR total bandshape analysis. This conjugation decreases the electrophilic character of carbon C-4 so that the displacement of the alkoxy group is no longer possible. Such a hindered rotation also exists in 4-N,N-dimethylaminopyrylium cations and the corresponding ΔG parameters have been evaluated. Comparison of these two cationic species shows that hindered rotation around the C—N bond is larger in position 4 than in position 2. Furthermore, the barrier to internal rotation around the C-2? N bond decreases with increasing electron donating power of the substituent at position 4. ΔG values decreases from 19.1 kcal mol?1 (79.9 kJ mol?1) to 12.6 kcal mol?1 (52.7 kJ mol?1) according to the following sequence for the R-4 substituents: -C6H5, -CH3, -OCH3, -N(CH3)2.  相似文献   

13.
The reactions of [Rh(CO)2Cl]2 with α-diimines, RN=CR′-CR′=NR (R = c-Hex, C6H5, p-C6H4OH, p-C6H4CH3, p-C6H4OCH3, R′ = H; R = c-Hex, C6H5, p-C6H4OH, p-C6H4OCH3; R′ = Me) in 2:1 Rh/R-dim ratio gave rise to ionic compounds [(CO)2Rh.R-dim(R′,R′)][Rh(CO)2Cl2] which have been characterized by elemental analyses, electrical conductivity, 1H-NMR and electronic and IR spectroscopy. Some of these complexes must involve some kind of metal-metal interaction. The complex [Rh(CO)2Cl.c-Hex-dim(H,H)] has been obtained by reaction of [Rh(CO)2Cl]2 with the c-Hex-dim(H,H) ligand in 1:1 Rh/R-dim ratio. The reactions between [(CO)2Rh.R-dim(H,H)][Rh(CO)2Cl2](R = c-Hex or p-C6H4OCH3) with the dppe ligand have been studied. The known complex RhCl(CO)(PPh3)2 has been isolated from the reaction of [(CO)2Rh.R-dim(H,H)]-[Rh(CO)2Cl2] (R = c-Hex or p-C6H4OCH3) with PPh3 ligand.  相似文献   

14.
Solvent transports across the perfluorosulfonic acid-type membrane Flemion S were measured for aqueous electrolyte solutions under a temperature difference and under an osmotic pressure difference. H+, Li+, Na+, K+, NH 4 + , CH3NH 3 + , (CH3)2NH 2 + , (CH3)3NH+, (CH3)4N+, (C2H5)4N+, (n-C3H7)4N+ and (n-C4H9)4N+ were used as counterions. Water flux across the membrane in HCl solution is higher than that in the other electrolyte solutions because hydrogen ions can exchange with the hydrogen of the neighbor water molecules and contribute to the water transport across the membrane as a proton jump in conductivity. The direction of thermoosmosis across the membrane in HCl, NaCl, (CH3)4NCl and (C2H5)4NCl solutions was from the cold side to the hot side and that in LiCl, KCl, NH4Cl, CH3NH3Cl, (CH3)2NH2Cl and (n-C4H9)4NBr solutions was from the hot side to the cold side, although thermoosmosis across anion-exchange membranes always occurs toward the hot side.  相似文献   

15.
The kinetics of thermal decomposition of solid In(S2CNR2)3 complexes, (R=CH3, C2H5, n-C3H7,i-C3H7, n-C4H9 and i-C4H9), has been studied using isothermal and non-isothermal thermogravimetry. Superimposed TG/DTG/DSC curves show that thermal decomposition reactions occur in the liquid phase, except for the In(S2CNMe2)3 and In(S2CNPri 2)3 compounds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
5 -C5H4[CH(CH3)OC(O)CH = CH2])Mn(CO)3, {η5—C5[CH-(CH3)OC(O)C(CH3)=CH2]]Mn(CO)3, and {η5—C5H4[CH(CH3)-OC(O)CH=C(CH3)2])Mn(CO)3 were synthesized (63, 57, and 51%, respectively) from {η5—C5H4[CH(CH3)OH])Mn(CO)3, toluene-sulfonic acid, and the acrylic, methacrylic, and dimethylacrylic acids, and from (η5-C5H4[CH(CH3)OH]}Mn(CO)3, pyridine, and the acrylic, methacrylic, and dimethylacrylic acyl chlorides [26, 48, and 25% (impure), respectively]. No product was obtained when NaH was used as the base in the latter method. The acrylate and methacrylate monomers were bulk homopolymerized at 65°C with AIBN (75% yield, Mn = 88,550 g/mol; 78% yield, Mn = 349,350 g/mol, respectively). The dimethylacrylate did not polymerize under these conditions. The polymers lost vinylcymantrene upon heating to 257 and 279°C, respectively. The polymers did not exhibit a clear Tg but were observed to soften at 85 and 160°C, respectively, and they could be pulled into fibers.  相似文献   

17.
Reactions of η5-C5H5Fe(CO)2CH2CCR (R  CH3, C6H5, and CH2Fe(CO)25-C5H5)) with HBF4 in acetic anhydride yield [η5-C5H5Fe(CO)22CH2CCHR)]+BF?4. The resultant cationic iron-η2-allene complexes react with a wide range of nucleophiles (Nu) to give the following types of behavior: (a) addition of Nu to carbon-1 of the η2-allene fragment (with NaBH4, (C2H5)2NH, and P(C6H5)3, inter alia), (b) addition of Nu to carbon-2 of the η2-allene fragment (with NaOCH3), (c) addition of Nu to the carbonyl carbon (with NaOC2H5), (d) deprotonation of the iron-η2-allene cation to the parent propargylic complex (with N(C2H5)3), and (e) nonselective reactions to yield a mixture of products (with CH3Li). Of these, the most common is behavior (a); together with the protonation of η5-C5H5Fe(CO)2CH2CCR it stimulates the two-step (3 + 2) cycloaddition reactions between electrophilic molecules and these iron-propargyl complexes.  相似文献   

18.
Reactions of the isopropoxides of some of the lighter lanthanons with bidentate -ketoimines, such asAAH-n-C4H9 andAAH-C6H5 (donor system: N,OH) and tridentate -ketoimines such asAA(CH2CH2)H2 andAA(CH2CHCH3)H2 (donor system: HO,N.OH) have led to products of the typesLn(O-i-C3H7)3n (AA-R) n ,Ln(Oi-C3H7) (AAR') andLn 2(AAR')3 [Ln=La(III), Pr(III) or Nd(III);n=1 or 2;R=-n-C4H9 or-C6H5 andR'=-CH2CH2-or-CH2CHCH3-]. Some undergo exchange reactions with an excess oftert-butanol, leading to the corresponding complexesLn(O-tert-C4H9)3n (AA-n-C4H9) n andLn(O-tert-C4H9) (AA-CH2CH2). All these have been characterised by elemental analysis, molecular weight determinations and their ir spectra. A thermogravimetric analysis of the diisopropoxy derivatives has also been carried out.
Schiff-Basen Derivate von Lanthaniden-Synthese von La(III), Pr(III) und Nd(III) chelaten mit -Ketoiminen
Zusammenfassung Reaktionen von Lanthanid-Isopropoxiden mit zweizähnigen -Ketoiminen [AAH-n-C4H9 undAAH-C6H5; Donorsystem: N,OH] und dreizähnigen -Ketoiminen [AA(CH2CH2)H2 undAA(CH2CHCH3)H2; Donorsystem: OH, N,OH] führten zu Produkten vom, TypLn(O-i-C3H7)3-n (AA-R) n ,Ln(O-i-C3H7) (AAR') undLn 2(AAR')3 [Ln=La(III), Pr(III) oder Nd(III);n=1 oder 2;R=n-C4H9 oder C6H5 undR'=CH2CH2 oder CH2CHCH3]. Einige Komplexe unterliegen bei Behandlung mit einem Überschuß vontert-Butanol einer Austauschreaktion, die zu den entsprechenden Butoxid-Komplexen führt [Ln(O-tert-C4H9)3-n , (AA-n-C4H9) n undLn(O-tert-C4H9) (AACH2CH2)]. Alle Derivate wurden mittels Elementaranalyse, Molgewichtsbestimmung und IR-Spektroskopie charakterisiert. Eine thermogravimetrische Analyse der Diisopropoxi-Derivate wurde ebenfalls ausgeführt.
  相似文献   

19.
Mercury(II) chloride in refluxing methanol or acetone cleaves the molybdenum—tin bond of π-methylcyclopentadienylmolybdenum tricarbonyl triphenylstannyl [(η5-C5H4CH3)(CO)3MoSnPh3] to give (η5-C5H4CH3)(CO)3MoHgCl. The same product was also obtained by reaction of [(η5-C5H4CH3)(CO)3Mo]2Hg with HgCl2 in acetone at room temperature. Similar reactions have given bimetallic complexes of the type (η5-C5H4CH3)(CO)3MoHgX (X = Br, I, SCN). The new complexes are air-stable crystalline solids. The structure of the compound (η5-C5H4CH3)(CO)3MoHgCl has been determined. It crystallizes in space group P21/c with Z = 4, a 6.613(2), b 13.647(4), c 13.257(4) Å, β 101.85(3)°, Dc 2.81 g/cm3, F(000) = 896, μ(Mo-Kα) 143.56 cm?1. Final R = 0.055 for 1696 observed reflexions.  相似文献   

20.
The hydrogen fluoride infrared chemiluminescence produced by the reactions of fluorine atoms with cyclopropane, cyclopentane, and cyclohexane have been studied. The emission data were used to determine the vibrational energy distributions for the abstraction of hydrogen from the secondary carbon–hydrogen bonds of these small cyclic hydrocarbons. The fraction of reaction exothermicity going into vibrational excitation of hydrogen fluoride was as follows: c-C3H6, 45%; c-C5H10, 53%; c-C6H12, 49%. The slightly lower fraction for the cyclopropane system may indicate that its radical reorganization energy is not completely available for excitation of product HF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号