首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Molecular dynamics of side chain liquid crystalline polymers (LCP) and their components were studied using the technique of paramagnetic resonance. A cigar shape spin probe (COL) and a nearly spherical spin probe (TPL) were used to study the motions and order of the LCPs. Computer simulations of the observed spectra were performed. Both rotational correlation times and order parameters were extracted from these simulations. We found that LCPs containing 30 per cent and 50 per cent of mesogenic side chains had about the same viscosity as indicated by nearly equal tumbling times at the same temperature. In addition, the LCPs motion is considerably slower than that of the monomeric liquid crystal indicating that the spacer couples the motions of the side chains to those of the main chain. Rotations about axes perpendicular to the side chain are slowed more than rotations about an axis parallel to the side chain. DSC measurements were employed to study the phase transitions. The 30 and 50 per cent LCPs displayed first order NSA transitions, but the 50 per cent LCPs transition was much weaker, in agreement with McMillan's theory which predicts a first order transition for T NS/T NI>0.87 (observed ratios are 0.98, 0.90 and 0.86 for 30, 50 and 100 per cent LCPs, respectively). The 30 per cent LCP has a very short nematic range so that the nematic order, which is not saturated at the NS transition, can couple with the smectic order. This was indicated by a sharp change in slope of the order parameter versus temperature plot as the smectic is entered. The LCPs studied formed a highly ordered glass when cooled in a 1 T field. If one could find a LCP with similar ordering properties whose glass temperature is well above room temperature, then one would have a useful binder for the manufacture of haze-free polymer dispersed liquid crystal displays.  相似文献   

2.
Abstract

Model compounds of semiflexible liquid-crystal polymers (LCPs), specifically deuteriated at various positions of the mesogenic units and aliphatic chains, have been studied by multipulse dynamic N.M.R. techniques. Analysis of the various experiments, employing a density-matrix treatment based on the stochastic Liouville equation, provides new information about the dynamic organization of the different systems. The results, referring to monomers and dimers, are discussed in relation to the properties of the parent LCPs.

The pronounced increase in orientational order from the monomers to the dimers can be rationalized by an intramolecular order transfer via highly extended spacers, in agreement with observations for the parent LCPs. A strong dependence of the nematic order on the parity of the spacer (even-odd effect) supports this concept. However, long-range orientational order of both model compounds is completely lost upon crystallization. Thus, despite the fact that dimers already achieve unusually high order parameters in the nematic phase, many of the exceptional properties of LCPs are restricted to systems with higher molecular weights.

Molecular motions in the model compounds occur within an extremely broad dynamic range, extending from 10?12 s (internal reorientation) in the fast-rotational to 10?3 s (director order fluctuations) in the ultraslow-motion regime. With respect to these dynamic properties, dimers behave like conventional monomeric liquid crystals, exhibiting much faster motions than the polymers.  相似文献   

3.
A series of liquid crystalline polymers (LCPs) have been synthesised by two cholesteric monomers M1, M2 and a nematic monomer M3. The chemical structures and liquid crystalline properties of the monomers and polymers have been characterised by FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analyses, X-ray diffraction measurements and polarising optical microscopy. All LCPs show a high thermal stability with wide mesophase temperature ranges. For polymer P1 bearing only cholesteric LC monomers component, it shows a cholesteric phase, whereas others display a blue phase besides a cholesteric phase. The formation of the blue phase is based on the structures of the polymers and the produced biaxial helix. The glass transition temperature and isotropic temperature of the polymers decrease on heating cycle with increasing the content of M3 in the polymers. The specific rotation values of the polymers are temperature-sensitive. The reflection spectra of polymers P1P6 show that the maximum reflected wavelengths shift to long wavelength with increasing the content of M3 in the polymer systems. The frequency and intensity of the bands change sharply at the temperature where cholesteric phase changes to blue phase, but they show a weak dependence on temperature in the blue phase.  相似文献   

4.
Polyarylates have previously been synthesized from acetate esters via esterolysis (loss of methyl acetate). This polycondensation can be extended to p‐substituted aromatic monomers for liquid crystal polyesters (LCPs). For AB‐type polymers, methyl p‐acetoxybenzoate and methyl 6‐acetoxynaphthoate were copolymerized to an LCP with reasonable molecular weights. Benzoate esters, methyl 4‐benzoyloxybenzoate (MBB) and methyl 6‐benzoyloxy‐2‐naphthoate (MBN), are also investigated. Several tin and antimony oxide catalysts were effective. The rate of esterolysis polymerization of MBB and MBN is slower than that of the corresponding acidolysis melt polymerization, but fast enough to give relatively high‐molecular‐weight polymers and similar thermal stability as commercial LCP prepared by acidolysis. Using these alternative benzoyloxy groups significantly reduced the color problem, because ketene loss cannot occur. Esterolysis melt polymerizations leading to AB/AABB‐type LCPs were performed using either dimethyl 2,6‐naphthalene dicarboxylate (DMND) or dimethyl terephthalate (DMT) with methyl 4‐acetoxybenzoate and phenylhydroquinone diacetate with tin and antimony catalysts. DMT‐based monomer compositions show much faster polymerization than DMND‐based compositions using antimony oxide catalyst. All these LCPs show a Tg in the 140–170 °C range as a result of the inclusion of the naphthalene and/or phenyl hydroquinone units in the polymer chain. Compositions completely off‐balanced on either side still lead to relatively high‐molecular‐weight copolyesters because either excess monomer can be removed during polymerization. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3586–3595, 2000  相似文献   

5.
The high sensitivity of the thermally stimulated current, thermal sampling (TS) method is emphasized in a study of the breadth of the glass transition in several liquid-crystalline polymers (LCPs). Differential scanning calorimetry (DSC) was performed on all samples to further quantify the glass transition regions. For “random” copolyester LCPs with widely varying degrees of crystallinity, including highly amorphous samples, very broad glass tran-sition regions were observed. One semicrystalline alternating copolyester and a series of semicrystalline azomethine LCPs were studied as examples of structurally regular polymers. These exhibited relatively sharp glass transitions more comparable to ordinary isotropic amorphous or semicrystalline polymers. The broad glass transitions in the random copolyesters are attributed to structural heterogeneity of the chains. In one example of a moderate-crystallinity random copolyester LCP (Vectra), glass transitions ranging up to ca. 150°C in breadth were determined by the thermal sampling (TS) method and DSC. In other lower crystallinity copolyester LCPs, the main glass transition temperature as determined by DSC was comparable to that determined by TSC although cooperative relaxations of a minor fraction of the overall relaxing species were detected well below the main Tg, by the TS method and not by DSC. Rapid quenches from the isotropic melt to an isotropic glass were possible with one LCP. The anisotropic and isotropic glassy states for this LCP were found to have the same breadth of the glass transition as was determined by the TS method, although TSC and DSC show that Tg is shifted downward by ca. 15°C in the anisotropic glass as compared to the isotropic glass. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
At the high temperatures used for the preparation of liquid crystalline aromatic polyesters (LCPs), ketene cleavage occurred from acetoxyarenes. Ketene is known to oligomerize to colored oligomers which may be responsible for an undesirable yellow color in LCPs. Thermolysis of the model compound p-acetoxybenzoate gave ketene oligomers and methyl p-hydroxybenzoate, which oligomerized. A free-radical chain reaction mechanism for ketene formation was demonstrated by the reaction of tributyltin hydride with haloacetoxyarenes.  相似文献   

7.
The orientation of the side‐chain liquid‐crystalline polymers (LCP) containing phenylbenzoate mesogenic groups in the magnetic field was examined with 2H NMR spectroscopy. The influence of the degree of polymerization as well as the length of the methylene tail group (n = 1–4) have been established. The decrease of the order parameter S of the LCPs with an increased length of the tail group was found. The order parameter S of LCPs does not depend on the degree of polymerization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2044–2048, 2002  相似文献   

8.
Synthesis of 1,5-bis(4-fluorobenzoyl)-2,6-dimethylnaphthalene ( 1 ), polycondensation of 1 with Bisphenol A, and properties of the obtained polymer were studied. Friedel–Crafts acylation of 2,6-dimethylnaphthalene with 4-fluorobenzoyl chloride in nitrobenzene selectivity afforded 1 in 82% yield. X-ray single crystal structural analysis of 1 confirmed that the dibenzoylation proceeded regioselectively and two methyl groups sterically inhibited the coplanarity of the two aromatic planes. The polycondensation of 1 with Bisphenol A in toluene/N-methyl-2-pyrrolidone (NMP) mixed solvent in the presence of excess potassium carbonate as a condensation reagent was carried out at 180°C for 4 h to quantitatively afford the corresponding poly(arylene ether-ketone) (PEK) 3 with high molecular weight (M?n~30,000) as a slightly yellow powder. As the reaction time was prolonged, both M?n and MWD of 3 increased and the solubility of 3 in chloroform clearly decreased. By GPC-LALLS, M?n of 3 obtained by the polycondensation for 16 h, was 85,000. The PEK 3 with high molecular weight was produced in a quantitative yield in a variety of solvents such as sulfolane. Water formed during the polycondensation hardly affected the yield and molecular weight of 3 , although a small molecular weight decrease took place. To evaluate the special effect of the methyl groups of 3 , polycondensation of 2,6-bis(4-fluorobenzoyl)naphthalene 2 with bisphenol A was carried out for comparison and the corresponding PEK 4 was quantitatively obtained. Whereas 3 was soluble in ordinary organic solvents such as tet-rahydrofuran (THF), chloroform, and NMP at room temperature, 4 was insoluble in most solvents except for strong acids such as conc. sulfonic acid. The polymer 3 showed high glass transition temperature (238°C) and 5% weight loss temperature (457°C). Casting of the polymer from THF solution gave a transparent, tough, flexible, and amorphous film. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
The influence of heat treatment on the texture, microstructure and tensile mechanical properties of extruded thin films of a series of high‐performance thermotropic liquid crystal polymers (LCPs) was investigated. LCPs based on random units of hydroxybenzoic acid (B), hydroxynaphthoic acid (N), terephthalic acid (TA) and biphenol (BP) were kindly supplied by the former Hoechst Celanese Corp as 50 µm thick extruded tapes. The LCPs, denoted B‐N, COTBP and RD1000, have B and N as common comonomers and vary the other comonomers. Thus, this study also enables the investigation of the influence of monomer composition on microstructure and mechanical properties. Heat treatments were carried out at temperatures close to the solid‐to‐nematic transition (Tsn) for periods up to 5 h, under dry air conditions. The thermal treatment produced either two endotherms or a small increase of Tsn (B‐N and RD1000), or increased significantly Tsn (COTBP). Moreover, when heat treatment was carried out approximately 40°C below the respective Tsn, the mechanical Young's modulus, E, along the extrusion axis, increased for all LCPs. Strikingly, for COTBP, E increased over 100% relative to the as‐extruded film. The results also showed that the optimum treatment time for improving the Young modulus, under dry air atmosphere, was between 3 and 4 h. Wide‐angle X‐ray scattering showed a significant sharpening of crystalline reflections and concentration of the 002 meridional reflection as a result of thermal treatment, suggesting the elimination of defects and a better alignment of the molecular chains along the extrusion axis. This would explain the increase in tensile modulus. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Pyrolysis–capillary gas chromatography combined with on-line alkylation has been employed for compositional analysis of liquid crystalline aromatic polyesters (LCPs) based on p- hydroxybenzoic acid. The fundamental conditions were examined using an LCP prepared from p-hydroxybenzoic acid, terephthalic acid, and 4,4′-biphenol and every constituent of a sample weighing ca. 50 μg was almost quantitatively recovered as its dimethyl derivative in the pyrogram obtained following pyrolysis at 400°C in the presence of 1 μl of 25% tetramethyl-ammonium hydroxide in methanol. The compositions of a variety of terpolyesters and LCPs containing isophthalic acid or 2-hydroxy-6-naphthoic acid units have been precisely deter-mined by pyrolysis-methylation GC.  相似文献   

11.
Liquid crystal polymers (LCPs) are a relatively new class of materials. These polymers usually consist of rigid rodlike molecular chains and they are capable of forming highly oriented structures even in the as-made product, with strength/modulus significantly higher than those of the conventional flexible chain polymers. Blending of LCPs with conventional polymers produces composite-like structures with LCPs serving as the reinforcing component. The properties of the blends are affected by the size, shape and distribution of the LCPs in the matrix polymer, which in turn are related to the processing conditions such as the blend composition, the extrusion and drawing conditions, the viscosity ratio of the component polymers and the type and grade of the LCPs and the matrix polymers. Improved processability of the blend due to the reduction in viscosity and the improved interfacial adhesion between reinforcing fibers and the matrix polymer are among the advantages of these materials over the conventional short fiber reinforced composites. This paper gives a brief review of the work currently available in the literature on rheology, fabrication, blend morphology and mechanical/thermal properties of the in situ composites from blends of LCPs and conventional polymers.  相似文献   

12.
The control of the condensed superstructure of light-emitting conjugated polymers(LCPs) is a crucial factor to obtain high performance and stable organic optoelectronic devices.Side-chain engineering strategy is an effective platform to tune inter chain aggregation and photophysical behaviour of LCPs.Herein,we systematically investigated the alkyl-chain branched effecton the conformational transition and photophysical behaviour of polydiarylfluorenes toward efficient blue optoelectronic devices.The branched side chain will improve materials solubility to inhibit interchain aggregation in solution according to DLS and optical analysis,which is useful to obtain high quality film.Therefore,our branched PEODPF,POYDPF pristine film present high luminance efficiency of 36.1% and 39.6%,enhanced about 20%relative to that of PODPF.Compared to the liner-type sides' chain,these branched chains also suppress chain planarization and improve film morphological stability effectively.Interestingly,the branched polymer also had excellent stable amplified spontaneous emission(ASE) behaviour with low threshold(4.72 μJ/cm~2) and a center peak of 465 nm,even thermal annealing at 220 C in the air atmosphere.Therefore,side-chain branched strategy for LCPs is an effective means to control interchain aggregation,film morphology and photophysical property of LCPs.  相似文献   

13.
The thermal degradation mechanisms of liquid crystalline aromatic polyesters (LCPs) prepared from p-hydroxybenzoic acid (PHB), biphenol (BP), and terephthalic acid (TA) were studied by pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS). The LCP containing deuterated terephthalate units and the LCPs that have different comonomer ratios were examined. On the basis of the pyrolysis products determined, the origin of the main pyrolysis products (benzene, phenol, biphenyl, phenyl benzoate, etc.) from the corresponding comonomer units were estimated and their thermal degradation mechanisms were eventually discussed in detail.  相似文献   

14.
History of Liquid Crystalline PolymersThe liquid crystalline(LC)state was first observed by Austrian botanist and chemist F.Reinitzer more than a century ago,and it was then confirmed in 1888 by German physicist O.Lehmann who named such a state of matter as"liquid crystal"in 1900.While low molecular mass(LMM)liquid crystals were successfully used in LC displays(LCDs),the development of LC polymers(LCPs)followed an independent path.Conceptually,LCPs are prepared with the incorporation of mesogenic groups that are responsible for the formation of LC mesophases,such as rod-like(calamitic)and discotic ones,into polymer chains.Depending on where the mesogens are attached,traditionally there are three major categories of LCPs.Main-chain LCPs(MCLCPs)have mesogens in the polymer backbone,while mesogens of side-chain LCPs(SCLCPs)are incorporated as side groups in a polymer with a relatively flexible main chain.In main-chain/side-chain combined LCPs(MCSCLCPs),mesogens are in both the backbone and side chains.Other classes of LCPs include mesogenjacketed LCPs(MJLCPs),dendronized LCPs,and LC networks(LCNs).  相似文献   

15.
A series of liquid crystal polymers (LCPs) with T‐shaped two‐dimensional mesogenic units were synthesized via solution polycondensation. The LCPs were used as ligand polymers to coordinate with palladium dichloride, by which a series of polymeric palladium complexes were prepared. The liquid crystalline behaviors of the compounds were characterized using differential scanning calorimetry, polarized microscopy and X‐ray diffraction. The entire palladium complexes went to liquid crystal phase when heated to their melting temperature (T m), and a threaded texture was observed. The melting point of all the complexes changes regularly with the increase of the end alkoxy group length and the flexible spacer unit in the ligand polymer. It is worth noting that some of the complexes without end substituent groups in the ligand polymer were also found to show liquid crystal behaviors, which would be a subject for further investigation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
The particle structure of polyvinyl chloride is controlled by the shear field imposed on the monomer droplet and the interfacial behavior of the vinyl chloride/water phases during polymerization. The inter facial tension in the presence of hydroxypropyl methylcellulose (HPMC) was measured as a function of concentration and temperature. The molecular weight distribution of HPMC was determined by coupled GPC-LALLS (low angel laser light scattering) technique. By monitoring the concentration of HPMC in the aqueous phase during polymerization, the coverage powers of HPMC were calculated and compared with the theoretical value based on Langmuir layer consideration. The effects of agitation on resin porosity were also examined. These results are discussed with respect to the particle structure.  相似文献   

17.
胶束形成的分形研究   总被引:3,自引:0,他引:3  
提出了测定胶束质量分维的两种新方法即粘度法和GPC-LALLS联机法,随后从动态光散射数据计算了离子型胶束SDS的分维,这些实验数值之间能互相印证.建立了放束形成过程的Laplace分形理论,计算得分维D=1.54(二级),作高级计算的分维D=1.67与前面实测值基本相符,另外,从唯象理论角度,讨论了胶束的多重分形及其热力学行为,发现有两个相变点β_c=-4和β_c=-1.并认为这两个转折分别对应着单分子<=>分形胶束<=>经典胶束结构之间的转变.  相似文献   

18.
In this work Pressure Volume Temperature (PVT) data for three different liquid crystal polymers (LCPs), namely Vectra A950® and two LCPs based on 4,4′-dihydroxybiphenyl (PB-n) (where n is the number of methylene units present in the polymer) and polyethylene terephtalate (PET), were obtained for temperatures ranging from 50 to 300°C and pressures ranging from 0.1 to 200?MPa. The experimental data were fitted to the Flory–Orwoll–Vrij equation of state and used to predict the influence of temperature on the surface tension of the four materials studied.

The surface tension of PET was shown to decrease linearly with increasing temperature. The surface tension of both PB-11 (γ PB-11) and Vectra A950® (γ Vectra) decreased linearly with increasing temperature for temperatures corresponding to the nematic phases of the materials. Abnormal behaviour was observed for the surface tension of PB-8 (γ PB-8): at temperatures just above T b (the temperature at which the material became birefringent), γ levelled off and then decreased. A clear discontinuity was observed for both γ PB-8 and γ PB-11 near the mesophase to isotropic transition. For both PB-8 and PB-11, γ decreased linearly with increasing temperature for temperatures corresponding to the isotropic phases of the materials.  相似文献   

19.
Post-polymerization modification (PPM) offers a versatile approach for engineering multifunctional polymers, but this advantage has not been fully exploited to fabricate multifunctional liquid crystal polymers (LCPs). Here, we design a facile synthetic approach towards multifunctional LCP by combining the ring-opening metathesis polymerization (ROMP) with PPM, in which ROMP helps to prepare a reactive LCP precursor with high molecular weight, and PPM provides a facilitation to introduce functional groups into the precursor. Consequently, a photo- and humidity-responsive linear LCP (LLCP) is demonstrated to show the potential of this synthetic strategy to diversify functions of the LCPs. Under light irradiation and humidity changes, the deformation modes of the LLCP films are converted to complex shapes (bending, twisting, and curling). The obtained dual-responsive LLCP with high molecular weight possesses excellent processability and recyclability, making it possible to construct 3D shape actuators with programmable deformation behaviors under light/humidity.  相似文献   

20.
Polymerization of methyl methacrylate (MMA) with diphenyl diselenide (DPDSE) in the presence of AIBN at 60°C was investigated. DPDSE was worked as a chain transfer agent (CTA). The chain transfer constant (Ctr) of DPDSE for MMA was estimated to be 1.43. On the other hand, DPDSE was functioned as a photoiniferter for the photopolymerization of MMA. In a limited range of conversion, both the polymer yield and number average of molecular weight ([Mbar]n) increased with the reaction time, and the [Mbar]n linearly increased with the yield. The terminal structure of poly(MMA) was investigated by the 77Se NMR spectrum based on Methyl α-phenylseleno isobutylate (MSEPI) as model compound of the ω-chain end of poly(MMA). Further, photopolymerization of poly (MMA) containing phenylseleno group at ω-chain end as a polymeric photoiniferter with MMA effectively afforded a poly (MMA) having higher molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号