首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study describes a simple and reliable method for the electrochemical determination of nitrite based on poly(amidoamine)-modified carbon nanotubes. Amine-terminated poly(amidoamine) (generation 4.0, G4-NH4) were covalently attached onto multi-walled carbon nanotube (MWNT)-modified glass carbon (GC) electrodes (written as G4-NH4/MWNT-modified GC) and which were used for the electrochemical determination of nitrite. The studies show that the G4-NH4/MWNT-modified electrodes demonstrated significantly enhanced electrochemical activity towards nitrite oxidation. Chronoamperometry studies reveal that the amperometric response is rapid, stable, and offers a linear dependence over a wide range of nitrite concentrations from 5 μM to 1.5 mM. The proposed method can be used for the continuous monitoring of nitrite in real samples. The electrochemical properties of the G4-NH4/MWNT nanocomposites are reasonably envisaged to be promising for providing a nanostructured platform in the development of electrochemical sensors or biosensors.  相似文献   

2.
The results obtained in studies of the structure and electrochemical properties of film electrodes prepared by magnetron plasma sputtering of silicon and graphite and working under the conditions of lithium injection and extraction are generalized. Composite silicon-carbon electrodes synthesized by depositing silicon and carbon nanolayers with the use of a magnetron plasma were films 100–500 nm thick. Part of them exhibited highly uniform nanogranular structure based on a carbon matrix with inserted silicon clusters of size below 6 nm. The nanogranular structure of Si/C composites was observed for the first time; such a morphology was not characteristic of not structured silicon layers deposited under equal conditions. The factors that determined the electrochemical charging-discharging behavior of new composites were the degree of uniformity of the nanogranular structure, the ratio between the silicon and carbon components, and film thickness. For two thin films, the initial composite capacitance was higher than that corresponding to the Li4.4Si stoichiometry for the silicon component and LiC6 stoichiometry for the carbon component, which was related to the special nanostructured state of silicon and carbon. The effects (luminescence band and absorption bands in the visible range) characteristic of nanosized silicon particles were observed.  相似文献   

3.
《Analytical letters》2012,45(20):2605-2618
Abstract

The development of a polymer electrode using reticulated vitreous carbon (RVC) as a support material is described. A conducting layer of (poly)carbazole or (poly)thiophene is el eletrochemically plated onto a RVC surface and the system is applied to the study of the electrochemistry of certain tricyclic drugs. An electrochemical response is seen for amitriptyline, nortriptyline and protriptyline all of which were previously reported to be electrochemically inactive while iminostilbene, imipramine and carbamazepine demonstrate similar electrochemical behaviour at both polymer and conventional carbon electrodes. The advantages of such electrodes and their use as working electrodes in hydrodynammic electrochemical detectors is presented.  相似文献   

4.
Abstract

The dual electrochemical detectors for ordinary and micro high-performance liquid chromatography were briefly reviewed.

The electrochemical behaviors of biogenic amine metabolites were studied by cyclic semi-differential and semi-integral voltammetry with a glassy carbon working electrode. It was found that the electrochemical reactions of many biogenic amine metabolites are quasi-reversible. The dual electrochemical detector based on thin-layer electrolytic cell with two working electrodes (anode and cathode) in series configuration was tested for selective detection of biogenic amine metabolites on their electrochemical quasi-reversibility. The detector was successfully utilized for the simultaneous determination of 3, 4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindole-3-acetic acid in human urine directly injected by micro high-performance liquid chromatography.  相似文献   

5.
改进了碳纳米管在壳聚糖溶液中的分散方法,制备了多壁碳纳米管/壳聚糖多层膜修饰玻碳电极,对比了不同修饰层数膜电极的循环伏安和电化学阻抗行为,5层多壁碳纳米管/壳聚糖膜修饰玻碳电极的电化学性能优良.在最优实验条件下,该修饰玻碳电极对邻苯二酚(CAT)有灵敏的响应,CAT浓度在3.99×10-6~9.09×10-4mol/L范围内与氧化峰电流呈良好的线性关系,检出限为2.39×10-6mol/L(S/N=3).该修饰玻碳电极性能稳定,测定4×10-5mol/LCAT溶液,RSD(n=10)为2.1%;15周后,该电极的响应值仅降低1.9%.  相似文献   

6.

Influence exerted by the nature of an electrode-substrate on the electrochemical deposition of tungsten oxides from a metastable acid solution of isopolytungstate was studied. As substrates for obtaining tungsten oxide deposits served metallic electrodes made of gold and platinum, films of mixed indium-tin oxide on glass (ITO-electrodes) and also glassy carbon electrodes and glassy carbon electrodes coated with films of conducting polymers: polyaniline, polypyrrole, and poly-3,4-ethylenedioxythiophene. It was shown that the nature of a substrate noticeably affects the electrochemical properties of tungsten oxide deposits. These differences are attributed to the adsorption of hydrogen on platinum in the range of the deposition potentials of tungsten oxide and to the chemical interaction of polytungstate ions with the thiophene sulfur of the polymer.

  相似文献   

7.
《Analytical letters》2012,45(5):817-853
Abstract

Carbon and its derivatives, as the high performance material, occupy a special place in electrochemistry due to its ‐in many ways‐ extreme properties. Recent trends and advances in the electrochemistry of carbon‐based electrodes are reviewed. The varieties of carbon‐based electrodes, their basic physicochemical properties and some characteristics are surveyed. Special attention is paid to the possibilities of carbon‐based electrodes in electroanalytical investigation in pharmaceutical dosage forms and biological samples using modern electrochemical techniques. This review includes a summary of the rules that must be considered for drug analysis from its dosage forms and biological samples using carbon‐based electrodes. The present review is the first comprehensive report on the heterogeneous and homogeneous carbon electrodes, and an addition to many excellent reviews on carbon electrodes in the literature. This review summarizes some of the recent developments and applications of carbon‐based electrodes for drug compounds in their dosage forms and in biological samples in the period from 1996 till 2006. Also some further selected designs (screen‐printed; carbon nanotubes, etc.) and applications have been discussed.  相似文献   

8.
We have studied the effect of treatment of multiwalled carbon nanotubes (MWCNTs) for use in DNA-based biosensors with oxygen plasma. Well-patterned MWCNT electrodes were photolithographically fabricated on glass substrates. Pure oxygen was used for etching and functionalization of the MWCNT film in a lab-made plasma chamber. The resulting electrodes exhibited a dramatic change in the morphology of their surface, the chemical composition, and the electrochemical properties in terms of peak current and peak potential separation. The electrodes also showed increased DNA immobilization efficiency and much higher sensitivity in the detection of target DNA as compared to non-treated MWCNT electrodes. Plasma treatment was optimized and electrodes were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, and differential pulse voltammetry.
Figure
Well-patterned MWCNT electrodes were photolithographically fabricated on glass substrates. Pure oxygen was used for etching and functionalization of the MWCNT film. The electrodes showed increased DNA immobilization efficiency and much higher sensitivity in the detection of target DNA as compared to non-treated MWCNT electrodes  相似文献   

9.
A method is described for the production of screen-printed graphite electrodes and also for similar electrodes chemically modified with the electrocatalyst cobalt phthalocyanine. Using cyclic voltammetry, the electrochemical behaviour of these electrodes towards ascorbic acid, reduced glutatione and coenzyme A (CoA-SH) was investigated. The modified electrodes were found to give significant decreases in the over-potential required for the oxidation of these species at carbon electrodes. The useful electrochemical window for the unmodified carbon film electrodes was ?1.08 V to +0.85 V vs. SCE, using 1 μA background current cut-off points.Amperometry in stirred solutions was used to investigate the hydrodynamic behaviour of the electrodes and their calibration performance. The limits of detection for ascorbic acid and reduced glutathione at the modified films were 5 × 10?8 and 1 × 10?7 M, respectively. The calibration graphs were also linear up to 2 mM concentrations of both analytes. Using differential-pulse voltammetry, linear calibration graphs were obtained for both species up to 2.5 mM. This technique was also used to assess the reproducibility of the electrode manufacture; the coefficient of variation was 2.8% for 1.49 mM ascorbic acid and 6.9% for 0.92 mM reduced glutathione.  相似文献   

10.
《Electroanalysis》2004,16(17):1451-1458
A new carbon electrode material, obtained by mixing single wall carbon nanotubes (SWNTs) with a mineral oil binder is studied. Carbon nanotube pastes show the special properties of carbon nanotubes combined with the various advantages of composite electrodes such as a very low capacitance (background current) and the possibility of an easy preparation, modification and renewal. A better knowledge of the characteristics of electrode reactions at carbon nanotube paste (CNTP) electrodes was obtained studying the electron transfer rates of various redox couples under different pretreatment conditions. A critical comparison with carbon paste (CP), platinum (Pt) and glassy carbon (GC) electrodes was also carried out. Capacitance and resistance values were also calculated for all electrodes investigated. Both untreated and treated CNTP electrodes showed a low resistance while the capacitance was markedly reduced with CNTP electrodes previously treated with concentrated nitric acid. An electrochemical pretreatment on CNTP electrodes was developed which showed an excellent result towards two‐electron quinonic structure species. After this treatment the heterogeneous standard rate constants for p‐methylaminophenol sulfate (MAP) and dopamine resulted to be significantly higher (2.1×10?2 cm/s and 2.0×10?2 cm/s, respectively) than those obtained with the other electrodes studied. Reproducibility, stability and storage characteristics of CNTP electrodes were also reported.  相似文献   

11.
《Analytical letters》2012,45(9):1698-1713
Abstract

This work reports the development of a biosensor method for the label‐free detection of specific DNA sequences. In the initial phase, square wave voltammetry (SWV) was used in a comparative investigation into the electrochemical oxidation of purines (guanine and adenine) and DNA fragments at various electrode surfaces: carbon paste (CPE), glassy carbon electrode (GCE), and gold (AuE). Relative to the carbon electrodes, an approximate 4.0‐fold, 6.0‐fold, and 3.25‐fold increase in the anodic response was observed when guanine, adenine, and hydrolyzed DNA, respectively, were measured on the AuE. It was shown that the guanine and adenine bases could be successfully determined by use of SWV for a deoxyribonucleic acid sample following acid hydrolysis. This label‐free detection of hydrolyzed DNA on gold electrodes has significant advantages over methods using existing carbon electrode materials because of its higher sensitivity and the potential applicability of microfabrication techniques for the production of the requisite gold electrodes.

In another phase of development, the times and conditions for DNA hydrolysis and purine release were investigated. It was shown that under optimal conditions, trace levels of the purine bases could be readily detected following 20 min of hydrolysis at room temperature. The proposed method can be used to estimate the guanine and adenine contents in DNA with in a linear range of 5–30 ng ml?1.

Finally, when appropriate probe sequences were first adsorbed on the surface of the screen‐printed gold electrode (SPGE), this electrochemical biosensor could be used to specifically detect sequences from ss corona virus aviair following hybridization and hydrolysis reactions on the sensor surface. No enhancement of the voltammetric response was observed when the sensor was challenged with a non‐complementary DNA sequence.  相似文献   

12.
Fabrication and characterization of amorphous carbon nitride a-CNx microelectrodes are reported. These electrodes were prepared by DC-sputtering of a thin carbon layer on sharpened glass tip. The kinetic parameters (k0 and α) and the diffusion coefficient of the ferri-ferrocyanide redox probe were determined by steady-state voltammetry (CV) and by electrochemical impedance spectroscopy (EIS), and were used for characterizing both the electrochemical sensitivity of microelectrodes and their dimensions. The cathodic activation procedure of the electrode resulted in an increase of the electron rate constant. This procedure provides a new way for the fabrication of carbon microelectrodes for local electrochemical measurements.  相似文献   

13.
We report the preparation and electrochemical characterization of carbon nanotubes (CNT)/carbon xerogel-nafion (CXN) electrodes obtained by casting carbon nanotube inks on carbon xerogel-nafion matrixes under terrestrial (g) and enhanced (13?g) gravity. The impregnated electrodes were compared with composites prepared by mixing CXN dispersions with CNT inks. For casted CNT, alternate current scanning electrochemical microscopy studies along the film-electrode area showed differences that can be correlated with the position of the electronic conducting CNT phase on the more resistive matrix. It revealed the transition from a conductive to dielectric surface when impregnation takes place at terrestrial and enhanced gravity, respectively. Although the addition of CNT enhances the capacitance and mechanical properties of CXN in all preparation methods, the largest specific capacitance was observed in electrodes impregnated at 1?g. Electrodes prepared by mixing and those casted at 13?g show similar capacitance values regardless of contrasting conductivity. A mechanism explaining the microstructural, electrical, and adsorptive differences brought out by the various preparation methods is proposed.  相似文献   

14.
《Analytical letters》2012,45(9):2175-2190
Abstract

The coverage of electrochemical chip sensors based on silicon technology with a polyurethane enzyme membrane is described. After crosslinking of the surface by polyfunctional isocyanates the enzyme membrane shows good adhesion, complete retention of the enzyme molecules, and low diffusional resistance to both analytes and products. Using thin film noble metal electrodes and ion sensitive field effect transistors, glucose and urea sensors with good long term stability and short response time have been prepared.  相似文献   

15.
Current-time relationships of faradaic processes at microcylinder, band, and tubular band electrodes have been evaluated. Microcylinder electrodes were fabricated from platinum wires (5 μm radius) sealed in glass capillaries. Band and tubular electrodes were constructed with platinum sheets (~ 20 μm width) or thin pieces of graphite (~ 5 μm width) sealed between insulating mateials. The temporal response of the current at a microcylinder electrode for the reduction of ferricyanide in aqueous potassium chloride solutions is in excellent agreement with that predicted by equations derived for heat flux to a cylinder. An estimation of the magnitude and temporal properties of the measured current at a band electrode can be obtained when a hemicylinder geometry is assumed. The current respone is identical at band and tubular band electrodes even for the smallest tubular radius investigated, 0.54 mm. Cyclic voltammograms at electrodes of all three geometries show significant contributions from radial diffusion at slow scan rates (< 20 mV s?1). The current at a graphite tubular band electrode was found to be independent of flow of solution through the electrode at flow rates up to 3 ml min?1.  相似文献   

16.
《Analytical letters》2012,45(10):791-798
Abstract

The design and operation of a double or bipotentiostat used to independently cont.ro1 the potential and measure the current produced at two working electrodes in a four-electrode thin-layer electrochemical detector, is described.  相似文献   

17.
The effect of various deposition techniques, electrode materials and posttreatment with tetrabutylammonium and tetrabutylphosphonium salts on the electrochemical behavior and stability of various Prussian blue (PB) modified electrodes, namely PB modified glassy carbon electrodes, silicate‐film supported PB modified glassy carbon electrodes, PB‐doped silicate glassy carbon electrodes, PB modified carbon ceramic electrodes using electrochemical deposition and PB modified carbon ceramic electrodes using chemical deposition is reported. Cyclic voltammetry and amperometric measurements of hydrogen peroxide were performed in a flow injection system while the carrier phosphate buffer (pH 7.0) with a flow rate of 0.8 mL min?1 was propelled into the electrochemical flow through cell housing the PB modified working electrode as well as an Ag|AgCl|0.1 M KCl reference and a Pt auxiliary electrode. The results showed that the deposition procedure, electrode material and posttreatment with additional chemicals can significantly alter the stability and electrochemical behavior of the PB film. Among the studied PB modified electrodes, those based on carbon ceramic electrodes modified with a film of electropolymerized PB showed the best electrochemical stability.  相似文献   

18.
利用微波等离子体化学气相沉积法在玻璃孔穴中定位生长纳米碳管电极, 分析了负偏压对纳米碳管电极生长的影响. 该电极对铜离子的电化学检测性能分析结果表明, 所制备的纳米碳管电极具有良好的电化学检测性能, 位于-0.0100 V附近的铜离子的还原峰峰形良好, 其电流在铜离子浓度为0.01~0.30 mmol•L-1时, 与Cu2+浓度呈良好的线性关系, 相关系数为0.9975, 且具有较好的长期稳定性和重现性.  相似文献   

19.
The electrochemical oxidation of anticancer drug 5-fluorouracil (5-FU) at graphene oxides (GOs)/carbon nanotubes (CNTs) nanohybrid-modified screen-printed carbon and glassy carbon electrodes was studied by voltammetric techniques. The modified electrodes showed better performance toward the electro-oxidation and determination of 5-FU compared to CNTs-modified or GOs-modified electrodes. The oxidation peak current obtained at about + 1.156 V (vs. Ag/AgCl) from square wave voltammetry was linearly dependent on the 5-FU concentration in the ranges of 0.05–5 and 5–1200 µM in phosphate buffer solution of pH 7.0. The developed method was applied successfully to the electrochemical sensing of 5-FU in human plasma samples at micro-molar concentration levels with satisfactory results. It is hopeful that the developed method in the future can be used for the simple and fast determination of 5-FU in clinical test and pharmacokinetics.  相似文献   

20.
High faradaic efficiencies can be achieved in the production of formic acid (HCOOH) by metal electrodes, such as Sn or Pb, in the electrochemical reduction of carbon dioxide (CO2). However, the stability and environmental load in using them are problematic. The electrochemical reduction of CO2 to HCOOH was investigated in a flow cell using boron‐doped diamond (BDD) electrodes. BDD electrodes have superior electrochemical properties to metal electrodes, and, moreover, are highly durable. The faradaic efficiency for the production of HCOOH was as high as 94.7 %. Furthermore, the selectivity for the production of HCOOH was more than 99 %. The rate of the production was increased to 473 μmol m?2 s?1 at a current density of 15 mA cm?2 with a faradaic efficiency of 61 %. The faradaic efficiency and the production rate are almost the same as or larger than those achieved using Sn and Pb electrodes. Furthermore, the stability of the BDD electrodes was confirmed by 24 h operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号