首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Analytical letters》2012,45(21-22):1665-1683
Abstract

A glc analysis method was developed for the simultaneous determination of diazepam (I), and its major metabolites N-desmethyldiazepam (II), oxazepam (III), and hydroxydiazepam (IV) in human plasma, urine, and saliva. Medazepam (V) was used as the internal standard to control extraction efficiency and permit precise and accurate determination of I-IV. Extraction and glc analysis of physiological fluid samples in triplicate required only 40 minutes using the developed method. Three human subjects were given either 20 or 5 mg of I via oral administration and serial specimens of blood, urine, and saliva collected. All samples were analyzed using the developed assay method. Results indicate that the method could be applied to pharmacokinetic studies of I where plasma, urine, and/or saliva is to be monitored.  相似文献   

2.
《Analytical letters》2012,45(5-6):639-648
Abstract

An improved procedure for the determination of caffeine in the presence of bupivicaine (internal standard) using gas liquid chromatography with nitrogen phosphorous detection is described. The method is based on the extraction of caffeine from plasma with a mixture of chloroform and isopropanol (95:5). The chloroform and isopropanol mixture is evaporated to dryness and the residue dissolved in 500 μl of ethyl acetate. One to 2 μl samples are injected directly into the gas chromatograph. This extraction process doesn't give rise to troublesome interfering peaks in the chromatogram. The recovery of caffeine from plasma and breast milk is approximately 99.7% and 94.1% respectively. The coefficient variation of the assay from plasma and breast milk is 2.90% and 1.18% respectively. The limit of quantitation is 0.05 mcg/ml of plasma or breast milk. Data are presented to illustrate the practicality of the method for bioavailability and pharmacokinetic evaluation of caffeine plasma and breast milk levels after oral administration of 100 mg of caffeine to lactating mothers.  相似文献   

3.
Abstract

A rapid and sensitive method of quantitation of caffeine and antipyrine in plasma and saliva is described. Caffeine, antipyrine and phenacetin, the internal standard, are readily extracted from alkalinized plasma and saliva into dichloromethane. After evaporation of the organic solvent, the residue is analyzed by HPLC using a mobile phase of 25% acetonitrile in 0.02 M phosphate buffer at a flow rate of 1.5 ml/min. and a C18 reverse phase column. Baseline separation of all peaks is achieved with retention times for all compounds of less than 10 minutes. There is no interference from endogenous compounds or metabolites of caffeine or antipyrine.  相似文献   

4.
A simple, sensitive, selective, and reproducible RP‐HPLC method with DAD detection at 240 nm was developed for the determination of six 1,4‐benzodiazepines: bromazepam (BRZ), clonazepam (CLZ), diazepam (DZP), flunitrazepam (FNZ), lorazepam (LRZ), alprazolam (APZ); and two metabolites: α‐hydroxyalprazolam (HALZ) and α‐hydroxytriazolam (HTZL) in human plasma, urine, and saliva, using colchicine as internal standard, after SPE using Nexus Varian cartridges. Separation was performed on a Kromasil C8 (250 mm×5 mm, 5 μm) analytical column with a gradient mobile phase containing methanol, ACN and 0.05 M ammonium acetate. Linearity was held within the range 0.3–20.0 ng/μL, with coefficients of determination (r2) better than 0.997. The within‐ and between‐day assay RSD at 2, 4, 8 ng/μL ranged from 0.03 to 4.7% and 0.5 to 7.0%, respectively in standards, from 1.3 to 7.9% and 3.3 to 7.3%, respectively in plasma, from 2.1 to 6.0% and 2.1 to 7.8%, respectively in urine and at 0.5, 1.0, 2.0 ng/μL ranged from 2.22 to 5.8% and 2.2 to 8.1%, respectively, in saliva. The mean relative recoveries were 96.3–108.6, 96.0–108.2, 94.3–107.1, 97.0–107.0% in within‐day assay and 96.8–107.7, 94.6–107.6, 93.2–105.8, 96.0–108.6 in between‐day assay for standard, plasma, urine, and saliva, respectively. The LOD and LOQ were 0.02–0.47 and 0.07–1.57 ng/μL, respectively.  相似文献   

5.
Abstract

A rapid, isocratic HPLC procedure for the identification of drugs of abuse in urine is described. The procedure utilizes a reverse phase μC18 column, a methanol/water mobile phase, buffered to pH 7.5, and a UV detector operating at 254 nm. Using indole as an external standard, 13 common drugs of abuse can be differentiated in less than 15 minutes. Nine different drugs of abuse were identified in actual drug screen urine samples, confirming TLC results. Reproducibility and quantitative capabilities of this method were also demonstrated. Due to apparent interferences from drug metabolites this method must at present be used in conjunction with another established method such as TLC or GC for positive drug identification.  相似文献   

6.
ABSTRACT

The food chain is the main source of exposure to humans by organochlorine pesticides (OCPs) due to the bioaccumulation. Breast milk can accumulate OCPs, so this matrix is often used as an environmental bioindicator. The currently available methods for the determination of several OCPs and metabolites in breast milk involve, in general, multi-step sample preparation and quantification techniques with low selectivity, high cost and much time and labour. Thus, a fast and efficient method based on sample preparation using the quick, easy, cheap, effective, rugged and safe (QuEChERS) method combined with gas chromatography coupled to mass spectrometry with negative chemical ionisation (GC-NCI-MS) was developed, validated and applied for determination of 16 OCPs and metabolites in breast milk samples. The extract was cleaned by dispersive solid-phase extraction (d-SPE) using MgSO4 and C18, evaporated in a Turbovap® system, redissolved and analysed by GC-NCI-MS. The method was validated showing acceptable recoveries (72–118%) and precision (RSD <19%). Method limits of detection (LODs) and quantification (LOQs) ranged from 0.75 to 7.5 ng g?1 and from 2.5 to 25 ng g?1 lipid, respectively. The method was successfully applied to 20 samples of breast milk from different regions of the Rio Grande do Sul state, Brazil, of which 75% contained residues below the LOQs.  相似文献   

7.
《Analytical letters》2012,45(6):1125-1135
Abstract

A HPLC method has been developed to determine the concentrations of SAZ-VII-23 (3-benzoyl-7-isopropyl-3,7-diazabicyclo[3.3.1]nonane HClO4), a novel antiarrhythmic agent, in dog plasma and urine. Plasma treated with acetonitrile and alkalinized urine were extracted with chloroform- propanol (9:1). An aliquot was injected on to HPLC system using a C6 reversed-phase column and acetonitrile-methanol-37.5 mM phosphate buffer, pH 6.8 (28.5:28.5:43 v/v) containing 4.0 mM triethylamine as mobile phase. Detection wavelength was 255 nm. The linear range were 0.04–8 μg/ml, and the lower limit of quantitation was 0.04 μg/ml in plasma and urine, respectively. The method was applied to determine plasma and urine concentrations and preliminary pharmacokinetic profiles of SAZ-VII-23 in a dog.  相似文献   

8.
Abstract

Urinary PAH-metabolite excretion by non-exposed volunteers, temporarily living on a PAH-poor and PAH-rich diet, respectively, as well as by occupationally PAH-exposed coke plant workers and road workers has been studied. Significant differences in the amount of the metabolites excreted in the urine were detected; the ratio of various metabolites was also found to be different. The mass excretion per liter of the metabolites from phenanthrene was found to be for the unexposed volunteers about 3.5μg/1, for coke plant workers about 70μg/l and for road workers about 35 μg/l. For the metabolites of chrysene the values were 0.03 μg/1 2.5 μg/l and 0.09μg/l, respectively, and for the total metabolites of benzo(a)pyrene: 0.006μg/l for unexposed persons, 0.37 μg/l for coke plant workers and 0.019 μg/l for road workers.  相似文献   

9.
A new detection method using headspace single-drop microextraction (HS-SDME) coupled to gas chromatography (GC) was established to determine the iodine in milk powder and urine. The derivative from the reaction between iodine and butanone in the acidic media was extracted into a micro-drop then determined by GC-ECD. With the optimisation of HS-SDME and derivatisation, the calibration curve showed good linearity within the range of 0.004–0.1 μg mL?1 (0.004–0.1 μg g?1) (R 2 = 0.9991), and the limits of detection for milk powder and urine were 0.0018 μg g?1 and 0.36 μg L?1, respectively. The mean recoveries of milk powder and urine were 90.0–107 % and 89.4–101 % with mean RSD of 1.7–3.4 % and 2.7–3.3 %, respectively. This detection method affords a number of advantages, such as being simple, rapid, and inexpensive, with low organic solvent consumption, and is remarkably free from interference effects, rendering it an efficient method for the determination of iodine in milk powder and urine samples.  相似文献   

10.
Abstract

A urine and a serum assay have been developed to quantitate theophylline and its major metabolites:1,3-dimethyluric acid, 3-methylxanthine and 1-methyluric acid. Reverse phase chromatography follows a serum acetone extraction procedure and a urine anion exchange clean-up procedure. Lower limits of sensitivity are 0.04 μg/ml for serum metabolites and 1 μg/ml for urine metabolites. Both assays are free of interference from endogenous substances. These assays have been tested successfully in pharmacokinetic and metabolic studies of theophylline.  相似文献   

11.
《Analytical letters》2012,45(17-18):1433-1447
Abstract

A simple, specific, rapid and sensitive method for the analysis of mecillinam in plasma and urine using high pressure liquid chromatography is described. The assay is performed by direct injection of a plasma protein free supernatant or a dilution of urine. A μBondapak phenyl column with an eluting solvent of 16% CH3CN-0.2% H3PO4 was used, with UV detection of the effluent at 220 nm. Desacetyl-cephalothin was used as the internal standard and quantitation was based on peak height ratio of mecillinam to that of the internal standard. The lowest concentration detectable without extraction was 0.25 μg/ml for plasma and 8.9 μg/ml for urine. No interference from plasma and urine was noted.  相似文献   

12.
Humans can be exposed to mycotoxins through the food chain. Mycotoxins are mainly found as contaminants in food and could be subsequently excreted via biological fluids such as urine or human breast milk in native or metabolised form. Since breast milk is usually supposed as the only food for new-borns, the occurrence of mycotoxins in thirty-five human milk samples was evaluated by a newly developed method based on QuEChERS extraction and UHPLC–HRMS detection. The method described here allows the detection of target mycotoxins in order to determine the quality of this initial feeding. The method has been fully validated, with recoveries ranging from 64% to 93% and relative standard deviations (RSD, %) being lower than 20%. Using the method described, non-metabolised mycotoxins such as ZEA, NEO, NIV, ENA, ENA1, ENB, ENB1 and metabolites, such as ZEA metabolites, HT-2, DOM and T-2 triol were detected in human milk samples. Results obtained help to estimate the exposure of mothers and infants to mycotoxins. Moreover, to the best of our knowledge, this is the first work describing the simultaneous detection, quantification and screening of mycotoxins and their metabolites in human mature milk.  相似文献   

13.
This article reports new, easy, and rapid microextraction by packed sorbent (MEPS)–ultra high performance liquid chromatography with photodiode array detection for the simultaneous determination in bovine urine, serum, and milk of three antibiotics belonging to the class of the fluoroquinolones, namely ciprofloxacin, enrofloxacin, and marbofloxacin, approved for veterinary and human use (ciprofloxacin). The chromatographic separation of the analytes and all aspects influencing the MEPS performance were optimized for the extraction from the considered biological samples. The optimized procedure required simple sample pretreatment, a short (<8?min) isocratic elution, and provided sufficient sensitivity for the determination of the analytes at trace levels in compliance with current legislation. Limits of quantitation were in the range from 0.002 (ciprofloxacin, urine) to 0.048?μg/mL (enrofloxacin, milk). Recoveries from 79% (enrofloxacin, milk) to 88% (ciprofloxacin, urine/serum) were obtained on spiked samples. The within-day (n?=?6) and between-day (n?=?6 over 3?days) relative standard deviation percentages in bovine urine, serum, and milk samples ranged from 2.2 (ciprofloxacin, urine) to 2.5 (enrofloxacin, serum) and from 3.1 (ciprofloxacin, urine) to 3.7 (enrofloxacin, milk), respectively, and were not concentration dependent. To the best of our knowledge, this is the first study describing a fast and simple method for the determination of fluoroquinolones in bovine biological samples.  相似文献   

14.
Abstract

A liquid chromatographic method is described for the determination of the new fluoroquinolone Ro 23–6240 and its N-demethyl and N-oxide metabolites in plasma and urine. The three substances were extracted from aqueous solution with dichloromethane/isopropanol containing sodium dodecyl sulphate. After evaporation and reconstitution, samples were analysed on a reversed-phase column using ion pair chromatography and fluorescence detection. The limit of quantification was 10–20 ng/ml (RSD 4%) using a 0.5 ml plasma sample, and the inter assay precision was 3–10% over the concentration range 50 ng/ml to 20 μg/ml. Recovery from plasma was 81% (RSD 10%) over the range 10 ng/ml to 5 μg/ml. The method has been applied successfully to the analysis of several thousand samples from human pharmacokinetic studies. Care has to be taken to avoid exposure of samples to direct sunlight, and the use of opaque vessels for sample storage and handling is recommended.  相似文献   

15.
Abstract

A rapid, sensitive and simple to operate HPLC method for the simultaneous determination of carbamazepine, carbamazepine 10,11-epoxide and 10,11-dihydro-10,11-trans-dihydroxycarbamazepine in plasma is described. The drug and its metabolites are extracted from plasma using commercially available reversed-phase octadecylsilane bonded-silica columns (Bond Elut C18, 2.8 ml capacity). Separation was achieved by reversed-phase chromatography, using a mobile phase consisting of acetonitrile - methanol - water (19:37:44) at a flow-rate of 1.8 ml/min in conjunction with a Waters Assoc. Nova-Pak C18 column. The analytical column, in Radial-Pak cartridge form, was used in combination with a Waters Assoc. Z-module RCSS and protected by a Waters Assoc. Guard-Pak precolumn module containing a Guard-Pak μBondapak C18 insert. Using ultraviolet detection at 214 nm, levels in the region of 50–100 ng/ml for CBZ and its metabolites can be measured with only 250 μl of plasma. The method has been used to determine steady-state concentrations of the drug and its metabolites in paediatric patients.  相似文献   

16.
Summary.  A simple and rapid derivative spectrophotometric assay procedure is described for the analysis of caffeine (1), acetaminophen (2), and propyphenazone (3) in tablet formulations. The concentration range of application is 5.0–25.0 μg·cm−3 for 2 and 3 and 1.0–5.0 μg·cm−3 for 1. The method involves the extraction of the drugs from tablets with 0.1 N H2SO4, filtration, appropriate dilution, and measurement of the fourth derivative absorbance values at zero crossing wavelengths of 230.0, 263.2, and 256.6 nm for 1, 2, and 3. As a reference method, a reversed phase HPLC procedure was developed. Commercially available tablets were analyzed; statistical comparison of the results with those obtained from the reference method showed good agreement. The derivative spectrophotometric method has the advantage of being simple, rapid, inexpensive, and easy to perform. Received April 18, 2001. Accepted (revised) June 5, 2001  相似文献   

17.
《Analytical letters》2012,45(12):2515-2531
ABSTRACT

Propofol is coupled with 2, 6-dichloroquinone-4-chlorimide (DCQ) in a reaction buffered at pH 9.6 to give a colored product having an analytically useful maximum at 635 nm. The factors affecting the color generation were optimized and incorporated in the procedure. The reacted propofol has a molar absorptivity of 3.9 × 10?4 L mol?1 cm?1, and Beer's law is obeyed for concentrations 1-5 μg ml?1 with detection limit 0.25 μg ml?1. The method was found applicable to biological fluids (plasma and urine) spiked with propofol at concentration levels 1-5 μg ml?1 for plasma and 1-5 μg 0.5 ml?1 urine (less sensitivity is obtained with urine volumes above 0.5 ml) with detection limits 0.28 μg ml?1 for plasma and 0.4 μg 0.5 ml?1 urine. The average recovery for the commercial preparation (1% w/v propofol emulsion intravenous injection for infusion) was 99.54% with an RSD of 1.05%. The method was validated by an adopted HPLC method. The results obtained by the HPLC method for the commercial preparation were statistically compared with the proposed method and evaluated at the 95% confidence limits.  相似文献   

18.
《Analytical letters》2012,45(3):395-410
Abstract

An HPLC method for the determination of salicylic acid (SA), gentisic acid (GA), salicyluric acid (SU), and salicyl acyl glucuronide (SAG) in rat urine was developed. The method consisted of extracting SA, GA, and SU from acidified urine into 50:50 mixture of ethyl acetate and butyl chloride. Salicyl acyl glucuronide was extracted from neutral urine after conversion to salicyl hydroxamic acid with hydroxylamine. Salicyl phenolic glucuronide was estimated indirectly as the difference between total salicylate and sum of the four constituents mentioned above. Chromatographic separation was done on a C18 column with U.V. detection at 310 nm using a mobile phase consisting of 5–10% acetonitrile in 3% glacial acetic acid. The extraction recovery of these compounds from spiked urine ranged from 90–108%. The detection limits were 10 μg/ml for GA, SU and SA, and 2.5 μg/ml for SHA. The method was applied to the study of salicylic acid metabolism in the rat.  相似文献   

19.
Abstract

An isocratic HPLC assay procedure for analysis of ciprofloxacin and three metabolites was developed. The procedure requires only dilution of bile, saliva, and urine samples prior to reverse-phase chromatography on a polystyrene-divinylbenzene (PSDVB) column; analysis of serum samples requires a cleanup step on a PSDVB cartridge prior to chromatography. The dependence of chromatographic efficiency on flow rate and temperature was investigated and the accuracy, precision, selectivity, and sensitivity of the procedure were evaluated. The developed procedure was also compared to a modified version of a published ciprofloxacin procedure that requires an octadecyl-silane (ODS) column for chromatographic separation. Similar efficiency, precision, and accuracy were observed with both procedures and both were used for analysis of clinical samples. However, the procedures were used for different purposes. The PSDVB procedure, because of more favorable column selectivity, was used to assay ciprofloxacin and its metabolites in bile, urine and saliva samples. The ODS procedure, because of a simpler serum preparation step, was used t o assay ciprofloxacin in serum samples.  相似文献   

20.
Abstract

The compound 4-amino-N-(2,6-dimethylphenyl)-benzamide has shown potential as a new anticonvulsant. A method for the liquid chromatographic determination of serum and urine concentrations of the compound and its N-acetylated metabolite was developed for pharmacokinetic studies. Quantitation was achieved via UV detection at 275 nm following isocratic reversed phase (C18) separation using a ternary solvent system of water:acetonitrile:acetic acid (60:39:1) at a flow rate of 1.5 mL/min. The compounds were isolated from a 50 μL sample of serum using solid phase extraction with prior protein precipitation. The compounds and internal standard were eluted from the extraction column with acetonitrile. Isolation from urine was achieved similarly with the exclusion of protein precipitation. The assay procedure is useful for the determination of concentrations of parent compound from 0.68 to 204.6 μg/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号