首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Elution phenomena of size exclusion chromatography (SEC) plus superimposed adsorption effects for oligostyrenes, epoxy resins, methylated melamine-formaldehyde resin prepolymers, p-cresolformaldehyde resin prepolymers, and phenol-formaldehyde resin prepolymers were investigated. SEC and superimposed adsorption effects could be elucidated from a concept of solubility parameter. Minimum retention volumes of these oligomers were obtained with the mobile phases of chloroform/methanol, 80/20 or 60/40 (v/v), and separation was expected to be mostly performed by SEC. The solubility parameter of polyvinyl alcohol gels was estimated to be between 21 and 23 from the above results. Elution for normal phase chromatography was in the order of increasing molecular weight and that for reversed-phase chromatography was in the order of decreasing molecular weight. These are reversed phenomena to those for low-molecular weight compounds. Solubility of sample solutes to mobile phase must be considered. Methanol mobile phase-polyvinyl alcohol gel system might be exception.  相似文献   

2.
Summary In supercritical fluid chromatography (SFC), the elution behavior of styrene oligomers in pentane depends greatly on the degree of oligomerization, n. The influence of capacity ratio, k, on the lower oligomers up to about n=11 resembles the behavior of other substrates of low molecular weight, like aromatic hydrocarbons. Thus, with pentane of 100 bar and below, minima are found in plots of k versus temperature. In contrast, the k of oligomers of higher molecular weight (n>11) increase monotonously with increasing temperature. The studies were performed using oligostyrene fractions obtained by semipreparative SFC fractionation.  相似文献   

3.
《Analytical letters》2012,45(11):1751-1764
Abstract

A new simple and accurate method for molecular weight estimation of oligomers by reversed-phase liquid chromatography was developed and has been proposed to use in the investigation of bio-oligomers. Capacity factors (k′) of 24 peptides and proteins ranging in molecular weight from 200 to 70000 were measured independently under isocratic eluting conditions with slightly different acetonitrile contents in the mobile phase. Profiles of plots of the log k' values of the peptides and proteins against the acetonitrile contents were on straight lines with different slopes. These slopes were characteristic for each oligomer and found to be proportional to the two/thirds power of the molecular weight. This elution behavior of oligomers in reversed-phase liquid chromatography can be explained in terms of the solvophobic theory. The estimated molecular weights of several bio-oligomers were more accurate than those obtained by size-exclusion chromatography. when the range of molecular weights was limited from 103 to 2×104.  相似文献   

4.
This article aims to modify conventional epoxy resin by blending with four different Mannich base oligomers. These oligomers are similar to phenolic resin matrix and simultaneously function as amino curing agent for epoxy matrix. In this context, Mannich base oligomers were prepared, respectively, by Mannich polycondensation reaction of four phenols namely phenol, m-cresol, resorcinol and 1,5-dihydroxy naphthalene, respectively, with formaldehyde and piperazine in presence of acid catalyst. The resulting oligomers were characterized by elemental analysis, spectral studies (IR and NMR), number average molecular mass [`(M)]n {\bar{M}}_{\rm n} estimated by non-aqueous conductometric titration and thermal stability by thermogravimetric analysis (TG). Each of these oligomers was used in resin matrix as a blending component for the modification of commercial epoxy resin for fabricating glass fibre reinforced laminates. Finally, these laminates were evaluated for their synergetic thermal stability, mechanical properties and chemical resistance to different reagents.  相似文献   

5.
The present work aims to modify conventional epoxy resin by blending with four different phenolic–urea oligomers. These oligomers are similar to phenolic–urea resin matrix and simultaneously function as amino curing agent for epoxy matrix. In this context, phenolic–urea oligomers were prepared respectively by polycondensation reaction of four phenols namely phenol, m-cresol, resorcinol and 1,5-dihydroxy naphthalene, respectively with formaldehyde and urea in presence of acid catalyst. The resulting oligomers were characterized by elemental analysis, spectral studies (IR & NMR), number average molecular weight (M¯n) estimated by non-aqueous conductometric titration and thermal stability by thermogravimetric analysis (TGA). Each of these oligomers was used in resin matrix as a blending component for the modification of commercial epoxy resin for fabricating glass fiber reinforced laminates. Finally these laminates were evaluated for their synergetic thermal stability, mechanical properties and chemical resistance to different reagents.  相似文献   

6.
Abstract

Resins, hardly soluble in THF or chloroform, in the oligomer region were analyzed using DMF as solvent and a polystyrene column for oligomers. This column, 25 cm × 8 mm i.d., is the exclusive use of DMF and has the number of theoretical plates of 6000 per 25 cm. Polynuclear methylol melamines were resolved into individual polynuclear species and peaks from mono- to penta nuclear methylol melamines were identified. The thermal stability of methylol melamines can be monitored by this system. Molecular weight distributions of urea-formaldehyde resins and phenol-formaldehyde resole resins were observed. This PSt gel - DMF system will be useful for the process control or the quality control of these resins.  相似文献   

7.
Dicyandiamide (DICY)-cured epoxy resins are important materials for structural adhesives and matrix resins for fiber reinforced prepregs. The objective of this study was to examine the mechanical and physical properties as well as the gel structures of the cured resins and discuss the relationships among them. Diglycidyl ether of bisphenol-A (DGEBA) oligomers were chosen as the common chemical structure of the epoxy resins. Four kinds of resin mixtures were formulated using the seven types of DGEBA oligomers having different molecular weight distributions. Three resin formulations having bimodal-type molecular weight distributions were designed to have almost identical rubbery plateau values of the storage modulus in dynamic mechanical analyses after curing, means that they had almost equivalent average crosslink density and basic chemical structure. However, the toughness, ductility, and environmental (heat and solvent) resistance of these three formulations were different. Atomic force microscopy revealed the existence of inhomogeneous nanoscale gel structures in these cured resins. The morphological differences in the gel structures in terms of their size, the connectivity, and the relative magnitude of the heterogeneity would cause the difference in several properties of the DICY-cured epoxy resins. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1425–1434, 2007  相似文献   

8.
Hydroxyl‐terminated poly(ether ether ketone) with pendent tert‐butyl groups (PEEKTOH) was synthesized by the nucleophilic substitution reaction of 4,4′‐difluorobenzophenone with tert‐butyl hydroquinone with potassium carbonate as a catalyst and N‐methyl‐2‐pyrrolidone as a solvent. Diglycidyl ether of bisphenol A epoxy resin was toughened with PEEKTOHs having different molecular weights. The melt‐mixed binary blends were homogeneous and showed a single composition‐dependent glass‐transition temperature (Tg). Kelley–Bueche and Gordon–Taylor equations gave good correlation with the experimental Tg. Scanning electron microscopy studies of the cured blends revealed a two‐phase morphology. A sea‐island morphology in which the thermoplastic was dispersed in a continuous matrix of epoxy resin was observed. Phase separation occurred by a nucleation and growth mechanism. The dynamic mechanical spectrum of the blends gave two peaks corresponding to epoxy‐rich and thermoplastic‐rich phases. The Tg of the epoxy‐rich phase was lower than that of the unmodified epoxy resin, indicating the presence of dissolved PEEKTOH in the epoxy matrix. There was an increase in the tensile strength with the addition of PEEKTOH. The fracture toughness increased by 135% with the addition of high‐molecular‐weight PEEKTOH. The improvement in the fracture toughness was dependent on the molecular weight and concentration of the oligomers present in the blend. Fracture mechanisms such as crack path deflection, ductile tearing of the thermoplastic, and local plastic deformation of the matrix occurred in the blends. The thermal stability of the blends was not affected by blending with PEEKTOH. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 541–556, 2006  相似文献   

9.
Abstract

Elution behavior of organic compounds in gel permeation chromatography was investigated using chloroform as eluent. In aliphatic hydrocarbons, the elution counts decreased linearly with increasing the molecular volumes. In aromatic hydrocarbons, the relation between molecular volume and elution count slightly shifted toward lower counts. The elution counts in esters, ketones, amides, alcohols and carboxylic acids always fell in lower elution counts than expected by aliphatic hydrocarbons. This fact suggests that all these compounds are solvated by eluent molecules. Amines and chlorides exhibit an adsorption effect on cross-linked polystyrene gel. These compounds are eluted behind the corresponding hydrocarbons for given molecular volumes, which were obtained by dividing molecular weight by density.  相似文献   

10.
K. Hibi  A. Wada  S. Mori 《Chromatographia》1986,21(11):635-641
Summary Several polystyrene gels of different pore sizes were packed into a 500 mm×2.1 mm I.D. column. Semi-micro size-exclusion chromatography (SEC) using these columns was carried out with a system consisting of a triple piston pump, a micro loop injector and a flow cell with 1.0-μl cell volume constructed for semi-micro HPLC, because the dead volume of the injector and the cell volume of flow cell for conventional HPLC caused a significant loss in column efficiency. The effects of sample amount, injection volume and mobile phase flow rate on column efficiency and retention volume were examined and the optimized operational variables of the sample amount (below 500 μg), the injection volume (less than 15 μl) and the flow rate range (30–70 μl/min) determiend for semi-micro SEC. Oligostyrene, epoxy resin, phenol-formaldehyde resin and phthalates were analyzed by the optimized semi-micro SEC system under the given conditions. In addition, molecular weight distribution of four different poly(ethylene terephthalate) films was successfully measured by using a mixture of chloroform and hexafluoroisopropanol as the eluent.  相似文献   

11.
The existence of local order in two epoxy resins of the diglycidyl ether of bisphenol-A (DGEBA) type has been investigated using Rayleigh scattering and Brillouin spectroscopy. The resins differ in their molecular weight distributions and their relative concentrations of epoxide and hydroxyl groups. The complementary use of both techniques in elucidating the thermal behavior of local order is illustrated, and the use of the latter technique to study thermal acoustic phonons and hypersonic relaxation is discussed. Both techniques independently show that molecular aggregates exist in each resin system. The scattering-envelope dissymmetry shows that the resin with the high epoxide/hydroxyl group ratio contains aggregates up to 20 nm in size, and the low-ratio resin exhibits sizes up to 70 nm. These aggregates are thermally unstable in the temperature range studied (293–443 K). Dissolution in chloroform shows that these aggregates are reduced in size and that further structural changes occur which are dependent on solvent concentration. Aggregate volume fractions were determined for a range of aggregate size. Brillouin spectroscopy indicated that both resins exhibit hypersonic relaxation in the temperature range studied. The complex longitudinal moduli of the resins were superimposable under a WLF temperature transformation comparable to the difference in their static glass transition temperatures. Molecular aggregate size, number, and stability are related to the epoxide/hydroxyl ratio of the resins and the degree of intermolecular hydrogen bonding.  相似文献   

12.
Siloxane-modified sulfone-containing epoxy resins (ESBS) were prepared by polycondensation of PMPS and/or PDMS siloxane oligomers with EBS, the sulfone-containing epoxy resin. Structures were analyzed by IR, 1H-, and 13C-NMR. The siloxane content in the copolymers was determined by 1H-NMR with an integration technique. Epoxy equivalent weight (EEW) determination indicated that the oxirane ring of EBS was intact with this hot-melt procedure. The GPC measurement of these ESBS copolymers showed that molecular weight (MW) increased with increasing siloxane content in PMPS-modified copolymers. Evidence of siloxane incorporation in the copolymer was discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
The polymerization of rigid rod polymer precursors in a reactive matrix precursor, which is later cured in the mold, constitutes the in situ process. A poly-azomethine (PAM) was used as the rigid rod molecule. The resin used was an epoxy. We discuss the prediction of mechanical properties using micromechanics equations for chopped fiber composites. The chemistry used to synthesize the rigid rod polymer PAM in the epoxy precursor is reviewed. Approaches to better control the cure of these epoxy systems through cure kinetics and cure rheology studies completes the thermoset in situ molecular composite process. There was a 71% increase in tensile modulus in comparison to that of the neat epoxy resin. Molecular modeling simulations and continuum mechanics are used to help understand these findings. PAM/epoxy systems were used as a matrix material in the fabrication of unidirectional glass fiber/(PAM/epoxy) structural composites. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
The condensation reaction between two different epoxy resins and a hyperbranched polyester (MAHP) [poly(allyloxy maleic acid‐co‐maleic anhydride)] was studied. We compared two kinds of diglycidyl ether bisphenol A type of epoxy resins with different molecular weights, that is, epoxy resin GY240 (M = 365 g/mol) and GT6064 (M = 1540 g/mol) in this reaction. The results showed a marked difference in their reaction pattern in terms of ability to form crosslinked polymer networks with MAHP. For the former low‐molecular‐weight epoxy resin, no crosslinking could be observed in good solvents such as THF or dioxane within the set of reaction conditions used in this study. Instead, polymers with epoxide functional degrees between 0.34 and 0.5 were formed. By contrast, the latter high‐molecular‐weight epoxy resin, GT6064, rapidly produced highly crosslinked materials with MAHP under the same reaction conditions. The spherical‐shape model of hyperbranched polymer was applied to explain this difference in reaction behavior. Hence, we have postulated that low‐molecular‐weight epoxy resins such as GY240 are unable to crosslink the comparatively much bigger spherically shaped MAHP molecules. However, using high‐molecular‐weight epoxy resins greatly enhances the probability of crosslinking in this system. Computer simulations verified the spherical shape and condensed bond density of MAHP in good solvents, and submicron particle analysis showed that the average MAHP particle size was 9 nm in THF. Furthermore, the epoxy‐functionalized polyesters were characterized by 1H NMR and FTIR, and the molecular weights and molecular‐weight distributions were determined by size‐exclusion chromatography. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4457–4465, 2000  相似文献   

15.
The IR MATIR spectra in the 1535-1680 cm-1 range were studied for epoxy-DPP resins (M N = 1650-3400) in coatings on germanium substrate obtained from oligomer solutions in methylene chloride and Cellosolve with the concentration c = 10-50%. The concentration dependences of the relative viscosity of narrow-MWD fractions of epoxy oligomers (M N = 1500-5300) in chloroform and Cellosolve solutions were studied. The structure of the network of cross-linked polymers based on epoxy (M N = 2100-3400) and phenol-formaldehyde (M N = 860) resins was studied by the electron-microscopic silver chloride decoration method. Based on the cluster lattice model, the optimal molecular weight and the concentration regimes were determined for epoxy oligomers in the lacquer composition for can protection.  相似文献   

16.
应用不同化学结构、分子量及其分布的环氧树脂进行了电子束辐射固化实验 ,对固化物进行了动态力学分析 ,研究了不同样品凝胶含量、内耗tanδ及动态模量的变化规律 .分析结果表明环氧树脂辐射反应活性与其化学结构有很大关系 ,酚醛型环氧树脂的辐射反应活性高 ,固化后高温模量及玻璃化温度较高 ,而脂环族环氧树脂反应活性小 .在低辐射剂量下 ,环氧树脂的固化度随分子量增大略有下降 ,但固化物的玻璃化温度随分子量增加而升高 .增大辐射剂量 ,树脂固化度的提高受分子量大小的影响很小 ,分子量较大样品的网络均匀程度有所提高 ,在较高反应程度下 ,玻璃化温度主要受固化度影响 .树脂固化程度也是决定其模量高低的主要因素 ,而在固化程度相近的情况下 ,分子量的影响作用很大 .在同样辐射剂量下 ,分子量分布宽的树脂固化反应程度高 ,但交联网络均匀性低 .  相似文献   

17.
A series of epoxy‐terminated liquid crystalline oligomers with different molecular weights having α‐methylstilbene as the mesogenic unit were synthesized and characterized by means of 1H NMR and FT‐IR spectroscopy, differential scanning calorimetry (DSC), polarized‐light optical microscopy (POM) and X‐ray diffraction. The effect of the initial ratio between epichlorohydrin and diol on the molecular weight was not significant enough to change the thermal behavior of the oligomers essentially. The copolymerization of epoxy‐ and hydroxyl‐terminated comonomers yielded high‐molecular weight oligomer, whose enantiotropic liquid crystalline character was proved by means of DSC, POM and X‐ray diffraction.  相似文献   

18.
By partial substitution of the chlorine atoms in hexachlorocyclotriphosphazene for halophenols and subsequent reaction of the resulting halogenated phenoxy phosphazene and 2,2-di(4-hydroxyphenyl)propane monophenolate hydtoxy-aryloxy phosphazenes were synthesized with a molecular weight of 1100–1400 g mol?1. Epoxide oligomers (epoxy number of 6–8%), which are cured with the formation of non-combustible compositions [PV-0 class of resistance to combustion according to State Standard (GOST 28157-89)], were obtained by reaction of these compounds with epichlorohydrin. Introduction of 5–50 wt% halogenated epoxyphophazene oligomers in industrial resin ED-20 can significantly improve the flame resistance of compositions based on these compounds.  相似文献   

19.
用含螺环原碳酸酯的预聚物改性环氧树脂的粘接性能   总被引:2,自引:0,他引:2  
用含螺环原碳酸酯的预聚物改性环氧树脂的粘接性能白如科,王长松,齐龙武,潘才元(中国科学技术大学材料科学与工程系,合肥,230026)关键词螺环原碳酸酯,齐聚物,改性环氧树脂,粘接性能Bailey[1]发现双螺环化合物在双开环聚合反应时,伴随着体积膨胀...  相似文献   

20.
The interfacial structure in thin epoxy bilayer films was investigated with neutron reflection. For each experiment, a mixture of crosslinker and deuterated resin was spun onto a chemically similar, fully cured, protonated epoxy film. The reflectivity measurements were performed before and after curing the top epoxy film. We focused on the extent of penetration of the components of the top layer into the network of the bottom layer. The effect of the cure temperature of each layer was examined. In addition, the effect of the initial molecular weight of the oligomers in the top layer was probed by the partial curing of the mixture before spinning. As deposited, the components of the top layer penetrated the bottom layer to an extent that was largely independent of the aforementioned factors. The principal observation was that an additional penetration occurred with curing. This additional penetration was dependent upon both the molecular weight of the top layer and the cure temperature of the top layer relative to the glass‐transition temperature of the bottom layer. A decrease in the thickness of the top layer with curing was also observed, which likely indicates some evaporation of oligomers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1709–1718, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号