首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of monodisperse (Mw/Mn < 1.1) poly(ferrocenyldimethylsilane)s was prepared with number‐averaged degrees of polymerization, 〈zn, of 9, 33, 206, and 506 ( 2 – 5 , respectively), as determined by gel permeation chromatography (GPC). The polymers were studied by small‐angle neutron scattering (SANS) in solution with the aim of obtaining the radius of gyration, Rg, the weight‐averaged molecular weight, Mw, and the polydispersity index, Mw/Mn. Data were collected over the range 0.008 < Q?1 < 0.5 and for a series of concentrations (weight fraction, w = 0.0063, 0.0125, 0.025, and 0.05). The scattered intensity, I(Q), was fitted to a model based on a Schultz–Zimm distribution of isolated chains with excluded volume. A comparison of the molecular weight and size data determined by GPC and SANS indicated an acceptable agreement between the values for Rg, Mw and Mw/Mn. The results of this study demonstrate the potential utility of SANS to fully characterize metallopolymers, and other polymer systems where traditional methods cannot be applied. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4011–4020  相似文献   

2.
Abstract

The nature of the averaging process in the analysis of gel permeation chromatograms was examined for cases where the molecules in the detector cell of the apparatus were of different molecular weight and of the same molecular weight. When the molecules have the same molecular weight, the hydrodynamic volume (1), [?]M, averaged across a chromatogram was found to become KMa+1 for any molecular weight average at the elution volume corresponding to that average. [η] is intrinsic viscosity, M is molecular weight, and K and a are the appropriate Mark-Houwink constants. Thus when size separation is by molecular weight, the universal GPC calibration functions include KMn a+1 where Mn is the number average molecular weight.

Cellulose nitrate and poly(oxypropylene) were analyzed using three sets of columns and two GPC instruments. KMn a+1, KMw a+1, and [η]Mw were found to represent the hydrodynamic volume since these functions fell on the universal calibration plot for nearly nono-disperse polystyrene standards. The function [η]Mn was displaced from the polystyrene universal calibration plot by factor which equaled Mw/Mn. The slopes and intercepts of the universal calibration plots were found to be completely consistent with the slopes and intercepts of the molecular weight calibration plots showing that the Mark-Houwink constants were correct. Intrinsic viscosity - molecular weight relations were presented for 12.0–12.6%N cellulose nitrate and for low molecular weight poly(oxypropylene), the latter relation being a correction of that of Sholtan and Lie (18).  相似文献   

3.
ABSTRACT

The synthesis of block copolymers containing low molar mass polypropylene and poly(meth)acrylates is reported. Vinyl-terminated polypropylene (Mn SEC=3,100; Mw/Mn=1.45) was used to prepare a macroinitiator for atom transfer radical polymerization (ATRP) via hydrosilation with 1-(2-bromoisobutyryloxy)propyl-tetramethyldisiloxane. Polar segments were then incorporated to polypropylene by chain extension using either methyl methacrylate, or n-butyl acrylate. While blocking efficiency was limited in this system, well-defined PP-b-PMMA (Mn=22,220; Mw/Mn=1.14) was obtained by extraction of unreacted polypropylene with diethyl ether.  相似文献   

4.
Gel permeation chromatographic (GPC) separations have been performed with several commercially available column packing materials. The results have been analyzed in the conventional manner to obtain the ratio of weight average to number-average molecular weight, Mw/Mn, for solutes with narrow molecular weight distribution. Various other parameters proposed to measure the efficiency of GPC columns have been evaluated and compared. It is proposed that the experimentally determined value of Mw/Mn for a series of different molecular weight samples with similar, narrow distribution for a given set of columns is a convenient parameter for comparing column efficiency in GPC. This parameter may be calculated from a single chromatogram unlike resolution, R, resolution index, RI, or specific resolution, RS, which require a pair of chromatograms. Results from the Mw/Mn method are usually in agreement with those from the R, RI, and RS calculations but one exception has been found. The number of theoretical plates calculated from the elution of a small molecule or from the polymer peak bears little relation to efficiencies predicted from the proposed Mw/Mn method or from R, RI, or RS.  相似文献   

5.
A green method for the controlled synthesis of aliphatic polymers is presented. The ring-opening polymerizations of cyclic monomers including several lactones, such as caprolactone (CL) or pentadecalactone (PDL), and cyclic anhydride monomers, such as succinic anhydride (SUC) and tetrahydrofuran (THF), catalyzed by a series of metal triflates (trifluoromethanesulfonate) were studied. Aluminum triflate was found to be an advantageous candidate to catalyze the ring-opening polymerization of cyclic monomers. The details of the ring-opening polymerization of CL catalyzed by aluminum triflate were studied. The maximum number average molecular weight (Mn), polydispersity (Mw/Mn) and yield of the obtained poly(-caprolactone) (PCL) at 60 °C for 6 hours were 18,400, 1.94 and 89 wt%, respectively. Those of poly(pentadecalactone) (PPDL) at 100 °C for 6 hours were 12,400, 2.24 and 49 wt%, respectively. The Mn, Mw/Mn and yield of the obtained poly(butylene succinate) (PBS) from SUC and THF at 100 °C for 48 hours were 4,900, 2.03 and 84 wt%, respectively. Furthermore, the mechanism of the polymerization was discussed based on the relationship between the conversion of CL and time. The molecular weight buildup of PCL was linear with a conversion in 50 min before the conversion reached 100 % and with Mw/Mn stabilized at about 1.5. The Mw/Mn of PCL then gradually increased. From these data, a living polymerization with a small transesterification was suggested from the PCL polymerization by aluminum triflate.  相似文献   

6.
Summary: The thermal polymerization of styrene is usually modeled by relying on a reaction scheme and a set of equations that were developed more than three decades ago by Hui and Hamielec. Many detailed models of styrene polymerization are available in the open literature and they are mostly based on the work of Hui and Hamielec, which nearly makes this the standard to follow in explaining the behavior of polystyrene reactors. The model of Hui and Hamielec does a very nice job of describing monomer conversion data but discrepancies are seen between observed and predicted values of number and weight average molecular weights, Mn and Mw. Discrepancies in number average molecular weight seem to be the result of random noise. Discrepancies in weight average molecular weight grow as the polymerization temperature decreases and some of the trends observed in the residuals over the entire temperature range cannot be attributed to random noise. Hui and Hamielec attributed the observed deficiencies to a standard deviation of ±10% in their GPC measurements. A new data set with an experimental error of 2% for average molecular weights is presented. The set contains measured values of Mn, Mw and Mz, so the polymerization scheme has been extended to include third order moments. The data set also includes the effect of ethylbenzene as a chain transfer agent. We present the results of comparing model predictions to our measurements and the adjustments made in the original set of kinetic parameters published by Hui and Hamielec.  相似文献   

7.
This study deals with control of the molecular weight and molecular weight distribution of poly(vinyl acetate) by iodine‐transfer radical polymerization and reversible addition‐fragmentation transfer (RAFT) emulsion polymerizations as the first example. Emulsion polymerization using ethyl iodoacetate as the chain transfer agent more closely approximated the theoretical molecular weights than did the free radical polymerization. Although 1H NMR spectra indicated that the peaks of α‐ and ω‐terminal groups were observed, the molecular weight distributions show a relatively broad range (Mw/Mn = 2.2–4.0). On the other hand, RAFT polymerizations revealed that the dithiocarbamate 7 is an excellent candidate to control the polymer molecular weight (Mn = 9.1 × 103, Mw/Mn = 1.48), more so than xanthate 1 (Mn = 10.0 × 103, Mw/Mn = 1.89) under same condition, with accompanied stable emulsions produced. In the Mn versus conversion plot, Mn increased linearly as a function of conversion. We also performed seed‐emulsion polymerization using poly(nonamethylene L ‐tartrate) as the chiral polyester seed to fabricate emulsions with core‐shell structures. The control of polymer molecular weight and emulsion stability, as well as stereoregularity, is also discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
The molecular weight of ethylene-block-co-polypropylene (co-PP) was adjusted by reactive extrusion with the incorporation of dicumyl peroxide (DCP), and the effect of molecular weight on the crystallization behavior, crystal morphology, and fracture behavior was investigated. It was found that, with increasing DCP content, the molecular weight (MW) decreased and the polydispersity (Mw/Mn) slightly decreased. After modification, the number of spherulites with obscure boundaries increased, and the size of the spherulites was more even due to increasing amount of grafting and micro-cross-linking structures, generated in co-PP degradation, which were acting as nucleating agents. Evaluated by essential work of fracture method, the specific essential work of fracture, we, was found to be strongly dependent on the molecular weight, especially, on the number average molecular weight (Mn) linearly, while the specific non-essential work of fracture, βwp, was enhanced with decreasing z-average molecular weight (Mz), probably owing to the reduction of ultra-high molecular weight component in degraded co-PP.  相似文献   

9.
Polycondensation methods greatly influence the molecular weight distribution of poly(hexamethylene sebacamide) (nylon 610) as determined by gel permeation chromatography (GPC). The ratio of weight average molecular weight to number average molecular weight (Mw/Mn) was used as a measure for estimating the molecular weight distribution. The Mw/Mn ratios of nylon 610 obtained from melt, solid phase, and high temperature polycondensation methods were 2 to 3.5, which were expected values for the most probable distribution. However, those for polymers obtained from the direct polycondensation in the presence of triphenylphosphine, interfacial polycondensation and low temperature polycondensation using an acid chloride varied over a wide range from 3.5 to 8.5. The effect of the kind of organic solvents in the interfacial method on the Mw/Mn ratios was especially large, and the molecular weight distribution could be controlled to some extent by selecting an appropriate solvent.  相似文献   

10.
Ultrasonic (70 W, 20 kHz) solution (2%) degradations of poly(alkyl methacrylates) have been carried out in toluene at 27°C and in tetrahydrofuran (THF) at -20°C. Mw and Mn of all polymers (before and after sonification) were computed from GPC. Irrespective of the alkyl substituent, Mw decreased rapidly at first and then slowly approached limiting values. All Mw/Mn ratios were in the vicinity of 1.5 at the limiting chain lengths. For identical Mn, the rate constants k were (4.2 ± 2.0) × 10?6 min?1 in toluene at 27°C and (5.4 ± 2.0) × 10?6 min?1 in THF at -20°C. For poly(isopropyl methacrylate) and poly(octadecyl methacrylate) with higher, but identical, Mn,0, k values were higher ((9.0 ± 1.0) × 10?6 min?1 at 27°C and (18.0 ± 1.5) × 10?6 min?1 at -20°C). This suggests that Mn,0 and not the bulk size of the alkyl substituents is the factor that determines the rate of degradation. Lowering of the temperature accelerates degradation due primarily to lower chain mobility of poly-(alkyl methacrylates) and enhanced cavitation. The average number of chain scissions ([(Mn)0/(Mn)t] - 1) calculated from component degradation data are much higher than those obtained with overall Mn,t values.  相似文献   

11.
Fatigue lifetimes, under a given alternating stress amplitude, have been determined for a series of linear and branched polystyrenes. The branched polymers were obtained by a crosslinking reaction using γ-irradiation from a Co60 source. By control of irradiation time, a series of branched samples of progressively increasing weight average molecular weight (Mw), with little change in number average molecular weight (Mn, were obtained. From comparison of fatigue data for these irradiated and branched samples with fatigue data obtained on a series of linear polystyrenes of increasing molecular weight, it may by concluded that appreciable increases in fatigue endurance can be achieved by increase in Mn and reduction in chain end density. For the irradiated samples, whether irradiated in air or in vacuum, fatigue lifetimes were comparable to or less than lifetimes to fracture for the unirradiated polymer, even though significant increases in Mw had occurred. It is suggested that the improved fatigue performance with increase of Mn is a consequence of increased craze stability resulting from the greater degree of chain entanglement and the smaller proportion of chain end defects.  相似文献   

12.
Monodisperse polystyrene (PS) particles were prepared by a living radical dispersion polymerization with a reversible addition‐fragmentation chain transfer (RAFT) agent in an ethanol medium. In the presence of RAFT agent, the effects of various reaction parameters on the characteristics of PS particles were systematically investigated. When no RAFT agent was involved, the number‐average molecular weight (Mn) of the PS particles increased from 17,800 to 30,000 g/mol, but the weight‐average diameter (Dw) decreased from 2.54 to 2.06 μm with the increase of poly(N‐vinylpyrrolidone) content from 4.0 to 16.0 wt %. No correlation between the Mn and the coefficient of variation (CV) was observed. However, when the RAFT concentration varied from 0 to 2.0 wt %, all of the conversion, Mn, Dw, CV, and polydispersity index (Mw/Mn) decreased. This indicates that the RAFT agent alters the inverse behavior between the molecular weight (MW) and particle size shown in the conventional dispersion polymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 872–885, 2008  相似文献   

13.
Abstract

The magnitude of the errors introduced in the calculated molecular mass averages is discussed in the case of gel permeation chromatography (CPC). It was shown, that neglecting the undetectable parts at both tails of a chromatogram where the intensity of the curve is very small, results in serious errors. For chromatograms with Gaussian shapes it was found, that if the molecular mass limits of the calculations were set at ±35 (S is the standard deviation of the curve) the numerically calculated Mn and Mm values deviated by 1 to 10% from the theoretical ones. The errors increased with increasing polydispersity and decreased as the number of data points increased. However, there was no significant difference in the results if the number of data points was greater than 20.  相似文献   

14.
Abstract

In this report we show by experimental and theoretical investigations that the commonly used GPC universal calibration parameter, the intrinsic viscosity multiplied by the weight average molecular weight ([η] Mw) is incorrect. The error which can arise by using [η] M to calculate the molecular weight across the GPC chromatogram for nonuniformly branched polymers [poly(vinyl acetate) and low density polyethylene] and copolymers with compositional drift, could be very large. We also show conclusively that the number average molecular weight Mn is the correct average to use for the universal calibration parameter. We therefore recommend that our general universal Calibration parameter [η] Mn be used for calculating the molecular weight across the chromatogram for all polymer systems (linear and branched homopolymers, copolymers with or without compositional drift and for polymer blends).  相似文献   

15.
The statement is often made in the polymer literature, without proof, that M zM wM n, where M z, M w, and M n are the z-, z weight-, and number-average molecular weights respectively. Four proofs of a generalization of these inequalities are given. It is shown that a higher-order molecular weight average is larger than a lower-order one, regardless of the form of the molecular weight distributions, except for the case when all the molecules have the same molecular weight. A brief discussion of the viscosity-average molecular weight is also included.  相似文献   

16.
The effects of molecular weight (MW) and MW distribution on the maximum tensile properties of polyethylene (PE), achieved by the uniaxial drawing of solution‐grown crystal (SGC) mats, were studied. The linear‐PE samples used had wide ranges of weight‐average (Mw = 1.5–65 × 105) and number‐average MWs (Mn = 2.0–100 × 104), and MW distribution (Mw/Mn = 2.3–14). The SGC mats of these samples were drawn by a two‐stage draw technique, which consists of a first‐stage solid‐state coextrusion followed by a second‐stage tensile drawing, under controlled conditions. The optimum temperature for the second‐stage draw and the resulting maximum‐achieved total draw ratio (DRt) increased with the MW. For a given PE, both the tensile modulus and strength increased steadily with the DRt and reached constant values that are characteristic for the sample MW. The tensile modulus at a given DRt was not significantly affected by the MW in the lower DRt range (DRt < 50). However, both the maximum achieved tensile modulus (80–225 GPa) and strength (1.0–5.6 GPa), as well as those at higher DRts > 50, were significantly higher for a higher MW. Although the maximum modulus reached 225 ± 5 for Mn ≥ 4 × 105, the maximum strength continued to increase with Mn even for Mn > 4 × 105, showing that strength is more strongly dependent on the Mn, even at higher Mn. Furthermore, it was found that each of the maximum tensile modulus and strength achieved could be expressed by a unique function of the Mn, independently of the wide variations of the sample MW and MW distribution. These results provide an experimental evidence that the Mn has a crucial effect on the tensile properties of extremely drawn and chain‐extended PE fibers, because the structural continuity along the fiber axis increases with the chain length, and hence with the Mn. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 153–161, 2006  相似文献   

17.
Norbornene copolymers functionalized with methyl ester group or carboxy group are facilely synthesized by the copolymerization of norbornene and 7‐octenyldiisobutylaluminum (ODIBA) with ansa‐dimethylsilylene(fluorenyl)(t‐butylamido)dimethyltitanium ( 1 ) activated by Ph3CB(C6F5)4, and the sequential CO2/methanolysis reactions or CO2/hydrolysis reactions, respectively. The methanolysis and the hydrolysis are simply switched by engaging acidic methanol or acidic aqueous acetone as the quenching/washing solution, respectively. Meanwhile, the increase of ODIBA in the copolymerization abruptly decreases the yield and number–average molecular weight (Mn) of the product. However, the addition of triisobutylaluminum (8 mM) and the use of excess Ph3CB(C6F5)4 (twofold of 0.4 mM of 1 ) significantly increase the yield, accompanying the increase in the Mn and the narrowing of the molecular weight distribution (Mw/Mn), especially in the case of the use of excess Ph3CB(C6F5)4. The yield (g polymer/g monomers), Mn, and Mw/Mn reach up to 0.82, 341,000, and 1.46, respectively, at a copolymerization condition. The carboxy groups in the norbornene copolymers are controlled in the range of 0–1.8 mol % in high polymer yields with high Mn and narrow Mw/Mn accompanied by the decrease in the contact angle with water from 104° to 89°. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5085–5090  相似文献   

18.
The relationship between viscosity constants, k', a and Kη from the equations of Huggins and Mark-Kuhn-Houwink has been considered. It is shown, theoretically, that the sum of k' and a must be constant for all flexible-chain macromolecules irrespective of the solvent used. On this basis, a combination of chromatography and viscometry measurements can be used to characterize a new species. The method has been applied to the new polymer, poly[methyl(pyridin-3-yl) siloxane] ( 1 ) where no suitable calibration standards are available. The value of a, k', and Kη for 1 has been calculated. The calculated constants enabled an estimation of different average molecular weights (MnMwMz) and polydispersity (Mw/Mn) from a minimum of experimental data. The new method is general and can be applied to any homogeneous linear flexible-chain nondraining macromolecule.  相似文献   

19.
Gel permeation chromatography (GPC) combined with a multi-angle light scattering (MALS) is a very powerful characterization technique because it provides both absolute molecular weight (Mw) and the radius of gyration (Rg) throughout the separated slices obtained by GPC. This combination of Mw and Rg, can be used to obtain information about the conformation of polymer chains in solutions and the branching of molecules. Due to the interesting properties obtained for polymers, it is essential to quantify the effect of different error sources in light scattering measurements as well as in the data treatment that highly affect the accuracy of obtained molar mass and radius of gyration. Usually, the results obtained for Mw and Rg in this analysis are dispersed for determined ranges of retention time and to have both reliable Rg and Mw for calculation, only high confidence data points have to be chosen. This range is arbitrarily chosen by the user for the data observation.In this work a new method of calculation to obtain Rg and Mw by means of GPC–MALS technique has been developed. As a first point, a data analysis procedure was set in order to describe both Rg and Mw vs. retention time and to determine the range where experimental data are confident. Several aspects in the data analysis have been studied. The polynomial fit function, the influence of the concentration of the sample, the reproducibility of the experiments and the conformational scaling law have been investigated by statistic technique in order to quantify the uncertainties involved.  相似文献   

20.
Cationic ring‐opening polymerization of a five‐membered cyclic dithiocarbonate having benzoxymethyl group; 5‐benzoxymethyl‐1,3‐oxathiolane‐2‐thione, was carried out with TfOH or TfOMe as an initiator in PhCl at rt – 60 °C. The molecular weight distribution (Mw/Mn) of the polymer obtained with TfOMe was very narrow even at 60 °C (Mw/Mn 1.14), and the Mn value of the polymers estimated by GPC was in good agreement with the molecular weight determined from ¹H‐NMR. The living nature of the polymerization was confirmed by the conversion dependence of the Mn (Mw/Mn) and the correlation of the experimental and theoretical Mn (Mw/Mn) values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号