首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Neutral and acidic oligosaccharides derived from human meconium glycoproteins by alkaline borohydride degradation have been separated by high-performance liquid chromatography on a Micro-Pak anion-exchange column. In each class, oligosaccharides were purified by normal-phase (neutral and acidic oligosaccharides) and reversed-phase (neutral oligosaccharides) chromatography. Effective separations of neutral oligosaccharides and acidic oligosaccharides were achieved.  相似文献   

2.
Separation and characterization of complex mixtures of oligosaccharides is quite difficult and, depending on elution conditions, structural information is often lost. Therefore, the use of a porous-graphitized-carbon (PGC)-HPLC-ELSD-MSn-method as analytical tool for the analysis of oligosaccharides derived from plant cell wall polysaccharides has been investigated. It is demonstrated that PGC-HPLC can be widely used for neutral and acidic oligosaccharides derived from cell wall polysaccharides. Furthermore, it is a non-modifying technique that enables the characterization of cell wall oligosaccharides carrying, e.g. acetyl groups and methylesters. Neutral oligosaccharides are separated based on their size as well as on their type of linkage and resulting 3D-structure. Series of the planar β-(1,4)-xylo- and β-(1,4)-gluco-oligosaccharides are retained much more by the PGC material than the series of β-(1,4)-galacto-, β-(1,4)-manno- and α-(1,4)-gluco-oligosaccharides. Charged oligomers such as α-(1,4)-galacturonic acid oligosaccharides are strongly retained and are eluted only after addition of trifluoroacetic acid depending on their net charge. Online-MS-coupling using a 1:1 splitter enables quantitative detection of ELSD as well as simple identification of many oligosaccharides, even when separation of oligosaccharides within a complex mixture is not complete. Consequently, PGC-HPLC-separation in combination with MS-detection gives a powerful tool to identify a wide range of neutral and acidic oligosaccharides derived from various cell wall polysaccharides.  相似文献   

3.
This study demonstrates the application of 2,5-dihydrohybenzoic acid/aniline (DHB/An) and 2,5-dihydroxybenzoic acid/N,N-dimethylaniline (DHB/DMA) matrices for automated identification and quantitative analysis of native oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Both matrices are shown to be superior to pure DHB for native glycans in terms of signal intensities of analytes and homogeneity of sample distribution throughout the crystal layer. On-target formation of stable aniline Schiff base derivatives of glycans in DHB/An and the complete absence of such products in the mass spectra acquired in DHB/DMA matrix provide a platform for automated identification of reducing oligosaccharides in the MALDI mass spectra of complex samples. The study also shows how enhanced sensitivity is achieved with the use of these matrices and how the homogeneity of deposited sample material may be exploited for quick and accurate quantitative analysis of native glycan mixtures containing neutral and sialylated oligosaccharides in the low-nanogram to mid-picogram range.  相似文献   

4.
Analysis of complex mixtures of plant cell wall derived oligosaccharides is still challenging and multiple analytical techniques are often required for separation and characterization of these mixtures. In this work it is demonstrated that hydrophilic interaction chromatography coupled with evaporative light scattering and mass spectrometry detection (HILIC-ELSD-MS(n)) is a valuable tool for identification of a wide range of neutral and acidic cell wall derived oligosaccharides. The separation potential for acidic oligosaccharides observed with HILIC is much better compared to other existing techniques, like capillary electrophoresis, reversed phase and porous-graphitized carbon chromatography. Important structural information, such as presence of methyl esters and acetyl groups, is retained during analysis. Separation of acidic oligosaccharides with equal charge yet with different degrees of polymerization can be obtained. The efficient coupling of HILIC with ELSD and MS(n)-detection enables characterization and quantification of many different oligosaccharide structures present in complex mixtures. This makes HILIC-ELSD-MS(n) a versatile and powerful additional technique in plant cell wall analysis.  相似文献   

5.
Glycosidases are an important class of enzymes for performing the selective hydrolysis of glycans. Although glycans can be hydrolyzed in principle by acidic water, hydrolysis with high selectivity using nonenzymatic catalysts is an unachieved goal. Molecular imprinting in cross-linked micelles afforded water-soluble polymeric nanoparticles with a sugar-binding boroxole in the imprinted site. Post-modification installed an acidic group near the oxygen of the targeted glycosidic bond, with the acidity and distance of the acid varied systematically. The resulting synthetic glycosidase hydrolyzed oligosaccharides and polysaccharides in a highly controlled fashion simply in hot water. These catalysts not only broke down amylose with similar selectivities to those of natural enzymes, but they also could be designed to possess selectivity not available with biocatalysts. Substrate selectivity was mainly determined by the sugar residues bound within the active site, including their spatial orientations. Separation of the product was accomplished through in situ dialysis, and the catalysts left behind could be used multiple times with no signs of degradation. This work illustrates a general method to construct synthetic glycosidases from readily available building blocks via self-assembly, covalent capture, and post-modification. In addition, controlled, precise, one-step hydrolysis is an attractive way to prepare complex glycans from naturally available carbohydrate sources.

Synthetic glycosidases with a sugar-binding active site and a precisely positioned acidic group hydrolyze oligo- and polysaccharides selectively in hot water to afford desired sugar products in a single step.  相似文献   

6.
Carbohydrates of all classes consist of glycoform mixtures built on common core units. Determination of compositions and structures of such mixtures relies heavily on tandem mass spectrometric data. Analysis of native glycans is often necessary for samples available in very low quantities and for sulfated glycan classes. Negative tandem mass spectrometry (MS) provides useful product ion profiles for neutral oligosaccharides and is preferred for acidic classes. In previous work from this laboratory, site-specific influences of sialylation on product ion profiles in the negative mode were elucidated. The present results show how the interplay of two other acidic groups, uronic acids and sulfates, determines product ion patterns for chondroitin sulfate oligosaccharides. Unsulfated chondroitin oligosaccharides dissociate to form C-type ions almost exclusively. Chondroitin sulfate oligosaccharides produce abundant B- and Y-type ions from glycosidic bond cleavage with C- and Z-types in low abundances. These observations are explained in terms of competing proton transfer reactions that occur during the collisional heating process. Mechanisms for product ion formation are proposed based on tandem mass spectra and the abundances of product ions as a function of collision energy.  相似文献   

7.
Matrix-assisted laser desorption/ionization (MALDI) spectra of underivatized oligosaccharides of the type attached to asparagine in glycoproteins (N-linked oligosaccharides) were examined with linear time-of-flight (TOF) and magnetic sector instruments using 2,5-dihydroxybenzoic acid (2,5-DHB), α-cyano-4-hydroxycinnamic acid, sinapinic acid, 1,4-dihydroxynaphthalene-2-carboxylic acid or 2-(4-hydroxyphenylazo)benzoic acid (HABA) as the matrices. All compounds formed abundant [M + Na]+ ions with the strongest signals being obtained from 2,5-DHB after recrystallization of the initially dried sample spot from ethanol. Only traces of fragmentation were detected from neutral oligosaccharides on the TOF system but more abundant fragment ions (about 5% relative abundance) were present in the spectra from the magnetic sector instrument. Fragmentation was dominated by Y-type glycosidic cleavages (Domon and Costello nomenclature) between all sugar residues yielding sequence and branching information. Sialic acid-containing oligosaccharides generally produced the sodium adduct of the sodium salt and gave much weaker signals than the neutral sugars in the positive-ion mode. There was also considerable loss of the sialic acid moleties as the result of fragmentation on the magnetic sector instrument. The least fragmentation of both neutral and acidic sugars was caused by 2.5 DHB, which proved to be the most appropriate matrix for examination of oligosaccharide mixtures. Much better resolution of the oligosaccharides was obtained than by traditional methods such as the use of Bio-Gel P-4 gel filtration column chromatography. It is worth noting also that the measurements were considerably faster (a few minutes as opposed to about 16 h). In addition, no radiolabelling was necessary as required for detection on the P-4 columns. Mixtures of oligosaccharides from several glycoproteins (ribonuclease B, human immunoglobulin G (IgG) transferrin, bovine fetuin and chicken ovalbumin) were examined and the patterns of the identified oligosaccharides were found to agree closely with the known compositions of the sugar mixtures. The mass spectrometric resolution on the magnetic sector instrument was very much better (up to 3000, FWHM) than could be obtained with the linear TOF systems (200–400). The technique was used as a detection system for the products of exoglycosidase digestion in experiments to determine the detailed structure of the oligosaccharide chains from human IgG.  相似文献   

8.
A glycosphingolipid analogue (12‐azidododecyl β‐lactoside) as a saccharide primer has been shown to be useful for the synthesis of oligosaccharide libraries by mammalian cells. In the present study, CE‐ESI‐MS was employed to elucidate the structure of glycosphingolipid analogues derived from 12‐azidododecyl β‐lactoside (Lac‐C12N3) by mammalian cells. MDCK cells and COLO201 cells were cultured with Lac‐C12N3, and the glycosylated products secreted into the medium were collected and separated into acidic and neutral products by column chromatography. The acidic products could be directly analyzed by CE‐ESI‐MS, while the neutral products were converted to anionic derivatives via a reaction with propiolic acid. With this method, it was possible to analyze both acidic and neutral products glycosylated by MDCK cells and COLO201 cells at high sensitivity.  相似文献   

9.
In this study we describe a new method for rapid and sensitive analysis of reduced high mannose and complex glycans using zwitterionic-type hydrophilic interaction nano-liquid chromatography (nano ZIC-HILIC, 75 μm I.D.×150 mm) coupled with high resolution nanoelectrospray ionisation time of flight mass spectrometry (nano ESI-TOF-MS). The retention of neutral glycans increases with increasing molecular weight and is higher for high mannose glycans than for complex-type glycans. The selectivity of ZIC-HILIC for sialylated glycans differs from that for the neutral glycans and is believed to involve electrostatic repulsion; therefore, charged glycans are eluted earlier than neutral glycans with comparable molecular weight. Due to the improved sensitivity achieved by employing a ZIC-HILIC nano-column, a range of less common complex glycans has been studied and the high resolution mass spectrometry enabled confirmation of glycan composition for the proposed structures. Good sensitivity for glycans was achieved without prior fluorescent labelling, and the time of the analysis was significantly reduced compared to the separation of glycans on a conventional-size column. The proposed method offers a fast and sensitive approach for glycan profiling applied to analysis of biopharmaceuticals.  相似文献   

10.
Morelle W  Michalski JC 《Electrophoresis》2004,25(14):2144-2155
Oligosaccharides were derivatized by reductive amination using benzylamine and analyzed by nanoelectrospray ionization-quadrupole time of flight-tandem mass spectrometry (nanoESI-QTOF-MS/MS) in the positive ion mode. The major signals were obtained under these conditions from the [M+H]+ ions for all benzylamine-derivatized oligosaccharides. To obtain structural information from these derivatized oligosaccharides, MS/MS was applied. Protonated molecular ions underwent extensive fragmentation, even under low-energy collision-induced dissociation. MS/MS spectra of [M+H]+ ions are characterized by simple fragmentation patterns which result from cleavage of the glycosidic bonds and thus allow a straightforward interpretation. Fragmentation of the [M+H]+ ions gave predominantly B- and Y-type glycosidic fragments. A systematic study of various oligosaccharides showed that information on sugar sequence and branching could easily be obtained. Predictable and reproducible fragmentation patterns could be obtained in all cases. This derivatization procedure and mass spectrometric methodology were applied successfully to neutral and acidic glycans released from 10 microg of glycoproteins separated by gel electrophoresis. Moreover, the derivatives retain their sensitivity to exoglycosidases. Thus a series of sequential on-target exoglycosidase treatments combined with matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) was found to be useful for the determination of structural features of the glycans released from proteins separated by gel electrophoresis such as the monosaccharide sequence, branching pattern, and anomeric configurations of the corresponding glycosidic linkages. Our strategy can be used successfully to assign the major glycans released from proteins separated by gel electrophoresis.  相似文献   

11.
Abstract

A μ-Bondapak C-18 column separates, by reverse phase process, mono, di and oligosaccharides within 40 min when water is used as eluent. The fractionation capabilities of this column are a function of experimental conditions (temperature and flow-rate). Chromatograms showing separations obtained for different carbohydrate mixtures are presented and discussed in terms of solubility parameters.  相似文献   

12.
The analysis of intact neutral oligosaccharides by on-line liquid chromatography/thermospray mass spectrometry is described. Molecular-weight information on oligomers up to a degree of polymerization of 10 is obtained using an aqueous mobile phase containing 10(-4) mol/L sodium acetate, which was found to be compatible with thermospray interfacing and ionization. Ions due to sodiated and disodiated oligosaccharides are observed under these conditions without fragmentation. The aqueous 10(-4) mol/L sodium acetate mobile phase is demonstrated to be applicable in the separation of mixtures of oligosaccharides on a reversed-phase octadecyl-modified silica column.  相似文献   

13.
The increasing interest in the development of glycoproteins for therapeutic purposes has created a greater demand for methods to characterize the sugar moieties bound to them. Traditionally, released carbohydrates are derivatized using such methods as permethylation or fluorescent tagging prior to analysis by high performance liquid chromatography (HPLC), capillary electrophoresis (CE), or direct infusion mass spectrometry. However, little research has been performed using CE with on-line mass spectrometry (MS) detection. The CE separation of neutral oligosaccharides requires the covalent attachment of a charged species for electrophoretic migration. Among charged labels which have shown promise in assisting CE and HPLC separation is the fluorophore 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS). This report describes the qualitative profiling of charged ANTS-derivatized and underivatized complex glycans by CE with on-line electrospray ion trap mass spectrometry. Several neutral standard glycans including a maltooligosaccharide ladder were derivatized with ANTS and subjected to CE/UV and CE/MS using low pH buffers consisting of citric and 6-aminocaproic acid salts. The ANTS-derivatized species were detected as negative ions, and multiple stage MS analysis provided valuable structural information. Fragment ions were easily identified, showing promise for the identification of unknowns. N-Linked glycans released from bovine fetuin were used to demonstrate the applicability of ANTS derivatization followed by CE/MS for the analysis of negatively charged glycans. Analyses were performed on both underivatized and ANTS-derivatized species, and sialylated glycans were separated and detected in both forms. The ability of the ion trap mass spectrometer to perform multiple stage analysis was exploited, with MS5 information obtained on selected glycans. This technique presents a complementary method to existing methodologies for the profiling of glycan mixtures.  相似文献   

14.
The development of a general method for the purification and quantitative glycomic analysis of human plasma samples to characterize global glycosylation changes shall be presented. The method involves multiple steps, including the depletion of plasma via multi-affinity chromatography to remove high abundant proteins, the enrichment of the lower abundant glycoproteins via multi-lectin affinity chromatography, the isotopic derivatization of released glycans, and quantitative analysis by MALDI-TOF MS. Isotopic derivatization of glycans is accomplished using the well-established chemistry of reductive amination to derivatize glycans with either a light analog (12C anthranilic acid) or a heavy analog (13C7 anthranilic acid), which allows for the direct comparison of the alternately labeled glycans by MALDI-TOF MS. The method displays a tenfold linear dynamic range for both neutral and sialylated glycans with sub-picomolar sensitivity. Additionally, by using anthranilic acid, a very sensitive fluorophore, as the derivatization reagent, the glycans can be analyzed by chromatography with fluorescence detection. The utility of this methodology is highlighted by the many diseases and disorders that are known to either show or be the result of changes in glycosylation. A method that provides a generic approach for sample preparation and quantitative data will help to further advance the field of glycomics.  相似文献   

15.
Fluorophore-assisted carbohydrate electrophoresis (FACE) is a fast and efficient analytical method which is now widely used in glycobiology for the separation and quantification of free or glycoprotein-released oligosaccharides. However, since identification by FACE of N-glycan structures is only based on their electrophoretic mobility after labelling with 8-aminonaphthalene-1,3, 6-trisulfonic acid (ANTS), co-migration of derived glycans on gel could occur which may result in erroneous structural assignments. As a consequence, a protocol was developed for the fast and efficient matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometric analysis of ANTS-labelled N-glycans. N-Glycans were isolated from plant and mammalian glycoproteins, reductively aminated with the charged fluorophore 8-aminonaphthalene-1, 3, 6-trisulfonic acid (ANTS) and separated using high resolution polyacrylamide gel electrophoresis. The ANTS-labelled glycans were eluted from FACE gel slices and then analysed by MALDI-TOF mass spectrometry in negative ion mode. Using 3-aminoquinoline containing 2.5 mM citrate NH(4)(+) as matrix, neutral N-linked N-glycans, as well as labelled sialylated oligosaccharides, were found to be easily detected in the 2-10 picomole range giving rise to ?M - H(-) ions.  相似文献   

16.
For the analysis of native glycans using tandem mass spectrometry (MS), it is desirable to choose conditions whereby abundances of cross-ring cleavages indicative of branch positions are maximized. Recently, negative ion tandem mass spectrometry has been shown to produce significantly higher abundances of such ions in glycans compared to the positive ion mode. Much of this prior work has concerned fragmentation patterns in asialo glycans. The present work compares the abundances of critical cross-ring cleavage ions using negative mode tandem mass spectrometry for milk oligosaccharides and N-linked glycans. For comparison, product ion formation was studied for deprotonated and nitrated ions formed from asialo glycans and deprotonated ions from sialylated glycans. Breakdown profiles demonstrate clearly that more energy was required to fragment sialylated compounds to the same extent as either their asialo or nitrate adducted counterparts. The extraction of a proton from a ring hydroxyl group during the ionization process may be viewed, qualitatively, as imparting significantly more energy to the ion than would that from a molecule bearing an acidic group, so that acidic glycans are more stable in the gas phase, as the negative charge resides on the carboxyl group. These results have strong practical implications because a major portion of glycans released from mammalian proteins will be sialylated.  相似文献   

17.
Sulfated glycans are involved in many biological processes, making well-defined sulfated oligosaccharides highly sought molecular probes. These compounds are a considerable synthetic challenge, with each oligosaccharide target requiring specific synthetic protocols and extensive purifications steps. Here, we describe a general on resin approach that simplifies the synthesis of sulfated glycans. The oligosaccharide backbone, obtained by Automated Glycan Assembly (AGA), is subjected to regioselective sulfation and hydrolysis of protecting groups. The protocol is compatible with several monosaccharides and allows for multi-sulfation of linear and branched glycans. Seven diverse, biologically relevant sulfated glycans were prepared in good to excellent overall yield.

Well-defined sulfated oligosaccharides are important synthetic targets. We present an on resin approach for the synthesis of sulfated glycans with a broad reaction scope that overcomes previous limitations associated with on resin synthesis.  相似文献   

18.
A method to map sugars two-dimensionally for the analysis of the structures of oligosaccharides from glycosphingolipids is described. Nine neutral and ten acidic oligosaccharides were obtained from glycosphingolipids by endoglycoceramidase digestion and labelled with 2-aminopyridine. The pyridylamino oligosaccharides were clearly separated by high-performance liquid chromatography on commercially available C18-silica and amide-silica column. All compounds tested were mapped without any overlapping. The separation of the pyridylamino oligosaccharides on the C18-silica column depended on the numbers and positions of sialic acid and N-acetylhexosamine residues; on the amide-silica column, the separation depended on the total number of sugar residues.  相似文献   

19.
Retention of hydrophilic compounds on porous graphitic carbon (PGC) is afforded by polar interactions with induced dipoles within this polarizable stationary phase. These interactions depend on the redox state of PGC, which can be influenced by application of an electrical field or by chemical means. We explored the impact of oxidizing and reducing agents on the retention of fluorescence labeled neutral oligosaccharides. Malto-oligosaccharides were employed as simple model system. Subsequently, the effects on the retention of glycans typical for immunoglobulin G (IgG) antibodies were investigated. Chemical oxidation of the PGC surface increased the retention of all analytes tested. Selectivities were significantly altered by the redox treatment, emphasizing the need for controlling the redox state of PGC to achieve reproducible conditions. Furthermore a column pre-conditioning protocol is presented, which allowed for reproducible chromatography of neutral IgG glycans.  相似文献   

20.
A simple, sensitive, and reproducible quantitative liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was designed for the simultaneous quantification of monosaccharides derived from glycoprotein and blood serum using a multiple‐reaction monitoring (MRM) approach. Sialic acids and neutral monosaccharides were efficiently separated using an amino‐bonded silica phase column. Neutral monosaccharide molecules were detected as their aldol acetate anion adducts [M + CH3CO2]? using electrospray ionization in negative ion MRM mode, while sialic acids were detected as deprotonated ions [M–H]?. The new method did not require a reduction step, and exhibited very high sensitivity to carbohydrates with limits of detection of 1 pg for the sugars studied. The linearity of the described approach spanned over three orders of magnitude (pg to ng). The method was validated for monosaccharides originating from N‐linked glycans attached to glycoproteins and glycoproteins found in human blood serum. The method effectively quantified monosaccharides originating from as little as 1 µg of glycoprotein and 5 µL of blood serum. The method was robust, reproducible, and highly sensitive. It did not require reduction, derivatization or postcolumn addition of reagents. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号