首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modification of silica gel with aluminium and zirconium can be used for the preparation of advanced silica-based cation-exchange stationary phases for use in ion chromatography with conductimetric detection (IC-CD) for cations. Silica gels modified with aluminium (Al-silica) and zirconium (Zr-silica) act as cation-exchangers under strongly acidic conditions. Highly sensitive indirect conductimetric detection and excellently simultaneous separation for common mono- and divalent cations (Li+, Na+, NH4+, K+, Mg2+ and Ca2+) can be achieved on the Al-silica and Zr-silica columns in IC-CD by using acidic eluents containing 15-crown-5 (1,3,7,10,13-pentaoxacyclopentadecane). The Al-silica and Zr-silica can also be applied successfully as cation-exchange stationary phases in ion-exclusion chromatography for the separation of various aliphatic and benzenecarboxylic acids.  相似文献   

2.
A capillary electrophoretic (CE) method has been optimized for the separation of some common alkali and alkaline-earth metal cations in anti-asthmatic homeopathic liquid pharmaceutical preparations. Separation was carried out on a 74 cm (62.5 cm to the detector) × 75 μm ID fused silica capillary at a potential of 25 kV and 25 °C. Baseline separation of NH4 +, K+, Ca2+, Na+, Mg2+ and Li+ was achieved in less than 4.5 min. The proposed method was applied for the determination of the above-mentioned ions in homeopathic liquid formulations. Limits of quantitation (LOQ) observed were 1.5 ppm for NH4 +, Ca2+ and Mg2+ 0.8 ppm for Na+, 1.6 ppm for K+, and 0.4 ppm for Li+. During electrophoresis, the ingredients used in the preparation of homeopathic formulation did not interfere with the cations examined.  相似文献   

3.
The analysis of the orbital interaction between an alkali metal ion and the surrounding solvent molecules is performed for aqueous solutions of Li+, Na+, and K+, by means of the ab initio MO method with the aid of the quantum mechanical (QM)/molecular mechanics (MM) method. A total of 171 water molecules are included for each system. The effect of Li+ orbitals reaches as far as 6 Å 7 Å for Na+; and 9 Å for K+. This effect is caused by the orbital interactions between the valence orbitals of an alkali metal ion and of the surrounding water molecules. The electrostatic interaction and the orbital interaction must not be neglected. The difference in the effect between the alkali metal ions originates from the difference in the valence orbital extensions of the alkali metal ions.  相似文献   

4.
The synthesis of a new tetrapyrazolic macrocyclic structure with a functionalised arm is described. The complexing properties of this new compound towards alkali metal ions (K+, Na+, Li+) were studied by liquid-liquid extraction and liquid membrane transport processes. The extracted and the transport cation percentage were determined by atomic absorption measurements and UV spectroscopy.  相似文献   

5.
Electrosubstitution of alkali cations in mixed-alkali glass containing both Na2O and K2O for other monovalent metal cations (M+=Li+, Ag+, and Cs+) was investigated using a solid-state electrochemical method. The fundamental electrolysis system consists of anode/M+-conducting microelectrode/glass/Na-β″-Al2O3/cathode, where M+ is substituted for the alkali metal ions in the glass under an applied electric field. Li+ ions attacked only Na+ sites, and Ag+ ions replaced Na+ sites more readily than K+. In contrast, Cs+ ions simultaneously substituted for both Na+ and K+ sites. The substitution behavior appears to depend on the difference in ionic conductivity between K+ and Na+ and the radius of the dopant. This mechanism was discussed qualitatively.  相似文献   

6.
The rheological change in kappa-carrageenan and agarose gels immersed in alkali metal salt solution was studied by the measurement of longitudinal vibrations. The storage modulus of kappa-carrageenan gel increased remarkably by the immersion, while that of agarose gel did not change so much. The reason of this change in kappa-carrageenan was ascribed to the shielding effect of the electrostatic repulsion of sulfate groups by alkali metal ions. As a result of the shielding, the helical structure was thought to become the densely packed state. The difference of the action between the two groups (Li+, Na+) and (K+, Cs+) was discussed from the viewpoint that these ions are either structure makers or breakers for the structure of water.  相似文献   

7.
《Polyhedron》1999,18(20):2597-2603
Macrotetracyclic complexes of nickel(II) containing crown ethers as pendant arms, [Ni(B)](ClO4)2 and [Ni(C)](ClO4)2, were prepared and characterized. The binding constants of the complexes toward alkali metal ions are relatively small compared with those of free 15-crown-5 or 18-crown-6 and the reduction potentials of the [Ni(B)](ClO4)2 and [Ni(C)](ClO4)2 in the presence of alkali metal ions shift to the positive direction in the order Li+>Na+>K+ and K+>Na+>Li+, respectively.  相似文献   

8.
We report novel liquid crystalline (LC) polymers containing pendant azobenzene moieties with n‐dodecyl substituents and ethyleneoxy spacers of different lengths and describe their selective detection behaviors to alkali metal ions. The new azopolymers produce homogenous smectic phases with a typical fan‐shaped texture. UV‐Vis and 1H NMR studies confirm that the azopolymers selectively bind to Li+ and Na+, but do not complex with K+, Ba2+, Mg2+, or Ca2+. Both the ethyleneoxy spacer and azobenzene units participate in binding to Li+ and Na+ cations in solution. Interestingly, after formation of the complexed structure, the ratio of cis to trans conformer is considerably increased suggesting stronger interactions of the cis conformer with alkali metal ions. Irradiation of the complexed structure with 365 nm UV induces conversion of the uncomplexed trans to the cis. These findings suggest a great potential of the LC azopolymers as selective sensors or separation membranes for alkali metal ions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1713–1723  相似文献   

9.
A density functional theory based on interaction of alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) with cyclic peptides constructed from 3 or 4 alanine molecule (CyAla3 and CyAla4), has been investigated using mixed basis set (C, H, O, Li+, Na+ and K+ using 6-31+G(d), and the heavier cations: Rb+ and Cs+ using LANL2DZ). The minimum energy structures, binding energies, and various thermodynamic parameters of free ligands and their metal cations complexes have been determined with B3LYP and CAM-B3LYP functionals. The order of interaction energies were found to be Li> K> Na> Rb> Cs+ and Li> Na> K? Rb> Cs+, calculated at CAM-B3LYP level for the M/CyAla3 and M/CyAla4 complexes, respectively. Their selectivity trend shows that the highest cation selectivity for Li+ over other alkali metal ions has been achieved on the basis of thermodynamic analysis. The main types of driving force host–guest interactions are investigated, the electron-donating O offers lone pair electrons to the contacting LP* of alkali metal cations.  相似文献   

10.
Indirect ultraviolet detection was conducted in ultraviolet‐absorption‐agent‐added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li+, Na+, K+, and NH4+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography‐indirect ultraviolet detection. The successful separation and detection of Li+, Na+, K+, and NH4+ within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded.  相似文献   

11.
《Analytical letters》2012,45(13):1115-1122
Abstract

The extraction study of alkali metal ions was made with a new type of crown ether, 4′-picrylaminobenzo-15-crown-5 (HL). Upon dissociation in alkaline medium orange-colored HL gives blood-red anion, L?, and extracts selectively K+ (and to a lesser extent Rb+) ion into chloroform as a colored complex of composition ML·HL. A colorimetric determination of 10 - 400 ppm K+ in the presence of < 2000 ppm Na+ was possible using this new crown ether reagent.  相似文献   

12.
Density functional theory (DFT) was used to study the interaction of alkali metal cations (Li+, Na+ and K+) with cyclic peptides constructed from silk type macrocycles ( Silk1, Silk2, Silk3, Silk4, Silk5 and Silk6 ). The calculated binding energies were used as a base for investigating the selectivity of the cyclic peptides in biniding to considered metals ions. The highest cation selectivity for Li+ compared to the other alkali metal ions was observed. The orbital nature of different interactions between the metal cations and the cyclic peptides was analyzed using NBO analysis. The main types of driving force for host‐guest interactions was investigated and it was found that the electron‐donating O offers lone pair electrons to the contacting LP* of alkali metal cations  相似文献   

13.
Black phosphorus (BP) is a desirable anode material for alkali metal ion storage owing to its high electronic/ionic conductivity and theoretical capacity. In-depth understanding of the redox reactions between BP and the alkali metal ions is key to reveal the potential and limitations of BP, and thus to guide the design of BP-based composites for high-performance alkali metal ion batteries. Comparative studies of the electrochemical reactions of Li+, Na+, and K+ with BP were performed. Ex situ X-ray absorption near-edge spectroscopy combined with theoretical calculation reveal the lowest utilization of BP for K+ storage than for Na+ and Li+, which is ascribed to the highest formation energy and the lowest ion diffusion coefficient of the final potassiation product K3P, compared with Li3P and Na3P. As a result, restricting the formation of K3P by limiting the discharge voltage achieves a gravimetric capacity of 1300 mAh g−1 which retains at 600 mAh g−1 after 50 cycles at 0.25 A g−1.  相似文献   

14.
A non‐ionic cryptand‐22 surfactant consisting of a macrocyclic cryptand‐22 polar head and a long paraffinic chain (C10H21‐Cryptand‐22) was synthesized and characterized. The critical micellar concentration (CMC) of the cryptand surfactant in ROH/H2O mixed solvent was determined by the pyrene fluorescence probe method. In general, the cmc of the cryptand surfactant increased upon decreasing the polarity of the surfactant solution. The cryptand surfactant also can behave as a pseudo cationic surfactant by protonation of cryptand‐22 or complexation with metal ions. Effects of protonation and metal ions on the cmc of the cryptand surfactant were investigated. A preliminary application of the cryptand surfactant as an ion‐transport carrier for metal ions, e.g., Li+, Na+, K+ and Sr2+, through an organic liquid‐membrane was studied. The transport ability of the cryptand surfactant for these metal ions was in the order: K+ ≥ Na+ < Li+ < Sr2+. A comparison of the ion‐transport ability of the cryptand surfactant with other macrocyclic polyethers, e.g., dibenzo‐18‐crown‐6, 18‐crown‐6 and benzo‐15‐crown‐5, was studied and discussed. Among these macrocyclic polyethers, the cryptand surfactant was the best ion‐transport carrier for Na+, Li+ and Sr2+ ions. Furthermore, a foam extraction system using the cryptand surfactant to extract the cupric ion was also investigated.  相似文献   

15.
F. Guibé  P. Sarthou  G. Bram 《Tetrahedron》1974,30(17):3139-3151
The alkylation of alkali metal and N+Bu4 ethylacetoacetate énolates by means of ethyl iodide, bromide and tosylate has been studied in diméthoxyéthane, in order to measure the reactivity of the associated forms. C/O alkylation ratios, structures of O-alkylated products and rates of alkylation, have been determined. With ethyl tosylate, the amount of O-alkylated products does not increase in the generally observed order Li+ < Na+ < K+ < Cs+ but in the order Na+ < K+ < Li+ ≈ Cs+. Some aspects of the alkali ethylacetoacetate énolates reactivity in weakly polar medium such as DME are discussed.  相似文献   

16.
    
Theoretical investigations have been carried out at B3LYP/6-311++G** level of theory to study the binding interaction of various metal ions, Li+, Na+ and K+ with dehydroannulene systems. The present study reveals that alkali metal ions bind strongly to dehydroannulenes and the passage through the central cavity is controlled by the size of metal ion and dimension of dehydroannulene cavity.  相似文献   

17.
The stability constants (Ks) of the complexes of alkali and alkaline earth metal ions with new type of the cryptands containing one or two thiourea moieties in one of the bridges were determined by means of pH-metric measurements in 95% aqueous methanol at 25 °C. Cryptands studied do not show any regular alteration of complexes stability depending on the mutual relation of cryptand cavity and cation sizes. In all cases, they form the most stable complexes with K+ along the series of alkali metal ions and with cations of Ba2+ or Sr2+ in the series of alkaline earth ions independently of variations of their structure. The log Ks values for K+, Sr2+ and Ba2+ vary in limits 3.51-5.90, 2.29-7.05 and 2.35-7.51, respectively, depending on the cryptands structure. The complexes stability of the studied cryptands increases in the order Li+ < Na+ (Cs+) < Cs+ (Na+) < Rb+ < K+ and Mg2+ < Ca2+ < Sr2+ (Ba2+) < Ba2+ (Sr2+). However, cryptands containing at least one oxygen atom between the nitrogen bridgehead and group of thiourea form considerably more stable complexes with respect to cryptands in which thiourea group connected with nitrogen bridgeheads via ethylenic chain. The origins of the cryptands complexation behavior are discussed in terms of ligands and complexes structural features.  相似文献   

18.
A series of five monoaza crown ethers with 12-crown-4 and 15-crown-5 rings were studied with respect to their complexation of Li+, Na+, K+, Ca2+ and Sr2+ ions in 95/5 (v/v) methanol/ water. The complexes were studied by potentiometric titrations, with pH and sodium ion-selective electrodes. The acidity constants of the protonated ligands, and the stability constants of the 1:1 metal complexes were determined. The results show that the stability constants increase with the total number of oxygen atoms in the ligand, and mostly also in the sequence Li+ < K+ < Na+ < Ca2+ < Sr2+.  相似文献   

19.
Black phosphorus (BP) is a desirable anode material for alkali metal ion storage owing to its high electronic/ionic conductivity and theoretical capacity. In‐depth understanding of the redox reactions between BP and the alkali metal ions is key to reveal the potential and limitations of BP, and thus to guide the design of BP‐based composites for high‐performance alkali metal ion batteries. Comparative studies of the electrochemical reactions of Li+, Na+, and K+ with BP were performed. Ex situ X‐ray absorption near‐edge spectroscopy combined with theoretical calculation reveal the lowest utilization of BP for K+ storage than for Na+ and Li+, which is ascribed to the highest formation energy and the lowest ion diffusion coefficient of the final potassiation product K3P, compared with Li3P and Na3P. As a result, restricting the formation of K3P by limiting the discharge voltage achieves a gravimetric capacity of 1300 mAh g?1 which retains at 600 mAh g?1 after 50 cycles at 0.25 A g?1.  相似文献   

20.
DFT (B3LYP functional) and MP2 methods using 6-311+G(2d,2p) basis set have been employed to examine the effect of ring fusion to benzene on the cation--π interactions involving alkali metal ions (Li+, Na+, and K+) and alkaline earth metal ions (Be2+, Mg2+ and Ca2+). Our present study indicates that modification of benzene (π-electron source) by fusion of monocyclic or bicyclic (or mixture of these two kinds of rings) strengthens the binding affinity of both alkali and alkaline earth metal cations. The strength of interaction decreases in the following order: Be2+ > Mg2+ > Ca2+ > Li+ > Na+ > K+ for any considered aromatic ligand. The interaction energies for the complexes formed by divalent cations are 4–6 times larger than those for the complexes involving monovalent cations. The structural changes in the ring wherein metal ion binds are examined. The distance between ring centroid and the metal ion is calculated for all of the complexes. Strained bicyclo[2.1.1]hexene ring fusion has substantially larger effect on the strength of cation--π interactions than the monocyclic ring fusion for all of the cations due to the π-electron localization at the central benzene ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号