共查询到20条相似文献,搜索用时 171 毫秒
1.
Donzello MP Ou Z Monacelli F Ricciardi G Rizzoli C Ercolani C Kadish KM 《Inorganic chemistry》2004,43(26):8626-8636
A new pyrazinoporphyrazine macrocycle carrying externally appended pyridine rings, tetrakis-2,3-[5,6-di(2-pyridyl)pyrazino]porphyrazine (hydrated), [Py(8)TPyzPzH(2)].2H(2)O, was prepared in high yield by direct cyclotetramerization of the precursor, 2,3-dicyano-5,6-di(2-pyridyl)-1,4-pyrazine, [(CN)(2)Py(2)Pyz], in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). The single-crystal X-ray structure of [(CN)(2)Py(2)Pyz] shows a noncoplanar positioning of the pyrazine and pyridine rings in the two slightly different independent molecular units present in the crystal. UV-vis spectra of [Py(8)TPyzPzH(2)] were measured in two nondonor solvents (CHCl(3), CH(2)Cl(2)), a slightly basic solvent (pyridine), and an acidic solvent (CH(3)COOH). In all cases, the spectral changes are consistent with the occurrence of molecular aggregation and colloidal dispersions which break up with time to give clear solutions containing exclusively the monomeric form of the macrocycle, either neutral [Py(8)TPyzPzH(2)] (in CHCl(3), CH(2)Cl(2), and CH(3)COOH) or dianionic [Py(8)TPyzPz](2)(-) (in pyridine). A spectrally monitored titration of [Py(8)TPyzPzH(2)] in CH(2)Cl(2) with TBA(OH) shows the loss of two protons from the macrocyclic core and quantitative conversion of [Py(8)TPyzPzH(2)] to [Py(8)TPyzPz](2)(-). Cyclic voltammetry and thin-layer spectroelectrochemical measurements show that [Py(8)TPyzPzH(2)] is present in CH(2)Cl(2) while [Py(8)TPyzPz](2)(-) is present in pyridine, but both forms of the compound exhibit identical electrochemical behavior, consistent with a conversion of the dianion to the neutral porphyrazine in pyridine prior to electroreduction via four reversible one-electron transfer steps. No oxidations of the macrocycle are observed in either solvent containing 0.1 M tetrabuthylammonium perchlorate (TBAP). A comparison of the electrochemical behavior for [Py(8)TPyzPzH(2)] with what is reported for related phthalocyanine and porphyrazine analogues highlights the remarkable electron-accepting properties of the presently investigated free-base macrocycle. 相似文献
2.
Metal derivatives of the octacationic tetrakis-2,3-[5,6-di{2-(N-methyl)pyridiniumyl}pyrazino]porphyrazine macrocycle [(2-Mepy)(8)TPyzPzH(2)](8+) (2-Mepy = 2-(N-methyl)pyridiniumyl ring) isolated as water-soluble hydrated iodide salts of the general formula [(2-Mepy)(8)TPyzPzM](I(8)).xH(2)O, (M = Mg(II)(H(2)O), Co(II), Cu(II), Zn(II); x = 2-5) were prepared from the corresponding neutral complexes [Py(8)TPyzPzM].xH(2)O previously reported. Reaction of these complexes with CH(3)I in N,N-dimethylformamide under mild conditions led to full quaternization of all eight pyridine N atoms and formation of the octacations [(2-Mepy)(8)TPyzPzM](8+). Clathrated water molecules could be eliminated from the species [(2-Mepy)(8)TPyzPzM](I(8)).xH(2)O by mild heating ( Co(I) process, but the site of electron transfer is reversed and the final product upon a further one-electron reduction is formulated as a Co(II) dianion as opposed to a Co(I) pi-anion radical. This sequence is similar to what was earlier reported for reduction of the same compound in pyridine. Reversible one-electron oxidations are also observed for the unmethylated species [Py(8)TPyzPzM].xH(2)O where M = Co(II) and Mn(II) in DMSO. Remarkably, the octacationic macrocycles [(2-Mepy)(8)TPyzPzM](I(8)).xH(2)O, (M = Mg(II)(H(2)O), Co(II), Cu(II), and Zn(II); x = 2-5) are more easily reduced at any step of the reduction than the corresponding unquaternized species with the same metal ion. This indicates a higher tendency to stepwise electron uptake after the quaternization process, which enhances the charge redistribution capability within the species formed by the electroreduction. 相似文献
3.
Donzello MP Ou Z Dini D Meneghetti M Ercolani C Kadish KM 《Inorganic chemistry》2004,43(26):8637-8648
A series of metal complexes of tetrakis-2,3-[5,6-di(2-pyridyl)pyrazino]porphyrazine, [Py(8)TPyzPzH(2)], having the general formula [Py(8)TPyzPzM].xH(2)O (M = Mg(II)(H(2)O), Mn(II), Co(II), Cu(II), Zn(II); x = 3-8) were synthesized by reaction of the free-base macrocycle with the appropriate metal acetate in pyridine or dimethyl sulfoxide under mild conditions. Clathrated water and retained pyridine molecules for the Mn(II) and Co(II) species are easily eliminated by heating under vacuum, the water molecules being recovered by exposure of the unsolvated macrocycles to air. Magnetic susceptibility measurements and EPR spectra of the materials in the solid state provide basic information on the spin state of the Cu(II), Co(II), and Mn(II) species. Colloidal solutions caused by molecular aggregation are formed in nondonor solvents (CH(2)Cl(2), CHCl(3)), a moderately basic solvent (pyridine), and an acidic solvent (CH(3)COOH), with the extent of aggregation depending on the specific solvent and the central metal ion. UV-vis spectral monitoring of the solutions after preparation indicates that disaggregation systematically occurs as a function of time leading ultimately to the formation of clear solutions containing the monomeric form of the porphyrazine. Cyclic voltammetry and thin-layer spectroelectrochemistry show that each compound with an electroinactive metal ion undergoes four reversible one-electron reductions, leading to formation of the negatively charged species [Py(8)TPyzPzM](n-) (n = 1 - 4). The stepwise uptake of four electrons is consistent with a ring-centered reduction, but in the case of the cobalt complex a metal-centered (Co(II) --> Co(I)) reduction occurs in the first process and only three additional reductions are observed. No oxidations are observed in pyridine or CH(2)Cl(2) containing 0.1 M tetrabuthylammonium perchlorate (TBAP). The nonlinear optical properties (NLO) of the species [Py(8)TPyzPzM] (M = 2H(I), Cu(II), Zn(II), Mg(II)(H(2)O)) have also been examined with nanosecond pulses at 532 nm in dimethyl sulfoxide solution. Reverse saturable absorption is shown by all of the [Py(8)TPyzPzM] species, which exhibit distinct behavior depending on the nature of M and extent of aggregation. 相似文献
4.
Donzello MP Viola E Cai X Mannina L Rizzoli C Ricciardi G Ercolani C Kadish KM Rosa A 《Inorganic chemistry》2008,47(9):3903-3919
New palladium(II) complexes of the free-base tetrakis[2,3-(5,6-di-2-pyridylpyrazino)porphyrazine], [Py 8TPyzPzH 2], have been prepared and their physicochemical properties examined. The investigated compounds are the pentanuclear species [(PdCl 2) 4Py 8TPyzPzPd], the monopalladated complex [Py 8TPyzPzPd], and its corresponding octaiodide salt [(2-Mepy) 8TPyzPzPd](I) 8. All three Pd (II) complexes have a common central pyrazinoporphyrazine core and differ only at the periphery of the macrocycle, where the simple dipyridinopyrazine fragments present in [Py 8TPyzPzPd] bear four PdCl 2 units coordinated at the pyridine N atoms in the pentanuclear complex, [(PdCl 2) 4Py 8TPyzPzPd], or carry pyridine-N(CH 3) (+) moieties in the iodide of the octacation [(2-Mepy) 8TPyzPzPd] (8+). The structural features of the pentanuclear complex [(PdCl 2) 4Py 8TPyzPzPd], partly supported by X-ray data and solution (1)H NMR spectra of the [(CN) 2Py 2PyzPdCl 2] precursor, were elucidated through one- and two-dimensional (1)H NMR spectra in solution and density functional theory (DFT) calculations. Structural information on the monopalladated complex [Py 8TPyzPzPd] was also obtained from DFT calculations. It was found that in the complex [(PdCl 2) 4Py 8TPyzPzPd] the peripheral PdCl 2 units adopt a py-py coordination mode and the generated N 2PdCl 2 moieties are directed nearly perpendicular to the plane of the pyrazinoporphyrazine ring, strictly recalling the arrangement found for the palladated precursor [(CN) 2Py 2PyzPdCl 2]. NMR and DFT results consistently indicate that of the four structural isomers predictable for [(PdCl 2) 4Py 8TPyzPzPd], one having all four N 2PdCl 2 moieties pointing on the same side of the macrocyclic framework (i.e., isomer 4:0, plus the 3:1 and the 2:2-cis and 2:2-trans isomers), the 4:0 isomer ( C 4 v symmetry) is the predominant form present. According to cyclic voltammetry and spectroelectrochemical results in pyridine, dimethyl sulfoxide (DMSO), and dimethylformamide (DMF), the monopalladated complex [Py 8TPyzPzPd] undergoes four reversible or quasi-reversible one-electron ligand-centered reductions, similar to the behavior also observed for the pentanuclear complex [(PdCl 2) 4Py 8TPyzPzPd], which shows an additional reduction peak attributable to the presence of PdCl 2. Owing to the electron-withdrawing properties of the PdCl 2 units, the pentanuclear complex is easier to reduce than the mononuclear complex [Py 8TPyzPzPd], some related [Py 8TPyzPzM] complexes, and their porphyrin or porphyrazine analogues, so much so that the corresponding monoanion radical is generated at potentials close to 0.0 V vs SCE in DMSO or DMF. In turn, the monoanion of [(2-Mepy) 8TPyzPzPd](I) 8 is also extremely easy to generate electrochemically. Indeed, because of the eight positively charged N-CH 3 (+) groups in this complex the first reduction occurs at potentials close to +0.10 V in DMSO or DMF. The redox behavior of the mono- and pentapalladated complexes has been rationalized on the basis of a detailed DFT analysis of their ground-state electronic structure. 相似文献
5.
Donzello MP Viola E Bergami C Dini D Ercolani C Giustini M Kadish KM Meneghetti M Monacelli F Rosa A Ricciardi G 《Inorganic chemistry》2008,47(19):8757-8766
Tetrakis-2,3-[5,6-di-(2-pyridyl)pyrazino]porphyrazinatopalladium(II) [Py 8TPyzPzPd] ( 1) and the corresponding pentapalladated species [(PdCl 2) 4Py 8TPyzPzPd] ( 2), dissolved (c approximately 10 (-5)-10 (-6) M) in preacidified dimethylformamide ([HCl] approximately 10 (-4) M), behave as potent photosensitizing agents for the production of singlet oxygen, (1)O 2, with Phi Delta values of 0.89 +/- 0.04 and 0.78 +/- 0.05, respectively. The related octacation [(2-Mepy) 8TPyzPzPd] (8+) ( 3), examined under similar experimental conditions, exhibits lower Phi Delta values, that is, 0.29 +/- 0.02 (as an iodide salt) and 0.32 +/- 0.02 (as a chloride salt). In view of the very high values of Phi Delta, the photophysics of complexes 1 and 2 has been studied by means of pump and probe experiments using ns laser pulses at 532 nm as excitation source. Both complexes behave like reverse saturable absorbers at 440 nm because of triplet excited-state absorption. The lifetimes of the triplet excited states are 65 and 96 ns for the penta- and mononuclear species, respectively. Fluorescence quantum yields (Phi f) are approximately 0.1% for both 1 and 2. Such low Phi f values for the two complexes are consistent with the high efficiency of triplet excited-state formation and the measured high yields of (1)O 2. Time-dependent density-functional theory (TDDFT) calculations of the lowest singlet and triplet excited states of the mono- and pentapalladated species help to rationalize the photophysical behavior and the relevant activity of the complexes as photosensitizers for the (1)O 2 ( (1)Delta g) generation. 相似文献
6.
7.
8.
合成了新的N-乙基咔唑衍生物: 3,6-二[2-(8-羟基喹啉基)乙烯基]咔唑(4)及其锌配合物(5); 化合物4经质谱、红外光谱、核磁共振氢谱、元素分析表征其结构, 并测定了它的荧光光谱. 结果显示: 化合物4的荧光发射为蓝绿色光(500 nm), 其发射光谱随着溶剂极性的增大荧光光谱向长波方向移动(即发生红移); 同时, 考察了化合物5的荧光性质, 其荧光发光峰值为600 nm, 与2-甲基-8-羟基喹啉锌相比, 发生了明显的红移. 相似文献
9.
10.
11.
John Burgess Colin D. Hubbard Paul H. Miyares Tracy L. Cole Tara P. Dasgupta Suzanne Leebert 《Transition Metal Chemistry》2005,30(8):957-963
The kinetics of base hydrolysis of the low-spin iron(II)-diimine complex [Fe(fertri)3]2+, where fertri=3-(2-pyridyl)-5,6-bis(2-furyl)-1,2,4-triazine, as a function of hydroxide concentration, solvent composition
(water; aqueous MeOH), and pressure are reported. Rate constants are also reported for dissociation of the [Fe(fertri)3]2+ cation in 50–64% MeOH, determined from replacement of the fertri ligands by 1,10-phenanthroline. The reactivity of this fertri
complex is compared with reactivities of a selection of other iron(II)-diimine complexes and, where possible, their ligand-sulfonated
derivatives. The activation volume for base hydrolysis of [Fe(fertri)3]2+ is +10.7 cm3 mol−1, in 40% MeOH. 相似文献
12.
Dr. Rafal Kulmaczewski Dr. Faith Bamiduro Namrah Shahid Dr. Oscar Cespedes Prof. Malcolm A. Halcrow 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(6):2082-2092
4-(tert-Butylsulfanyl)-2,6-di(pyrazol-1-yl)pyridine (L) was obtained in low yield from a one-pot reaction of 2,4,6-trifluoropyridine with 2-methylpropane-2-thiolate and sodium pyrazolate in a 1:1:2 ratio. The materials [FeL2][BF4]2⋅solv ( 1[BF4]2 ⋅solv) and [FeL2][ClO4]2⋅solv ( 1[ClO4]2 ⋅solv; solv=MeNO2, MeCN or Me2CO) exhibit a variety of structures and spin-state behaviors including thermal spin-crossover (SCO). Solvent loss on heating 1[BF4]2 ⋅x MeNO2 (x≈2.3) occurs in two steps. The intermediate phase exhibits hysteretic SCO around 250 K, involving a “reverse-SCO” step in its warming cycle at a scan rate of 5 K min−1. The reverse-SCO is not observed in a slower 1 K min−1 measurement, however, confirming its kinetic nature. The final product [FeL2][BF4]2⋅0.75 MeNO2 was crystallographically characterized, and shows abrupt but incomplete SCO at 172 K which correlates with disorder of an L ligand. The asymmetric unit of 1[BF4]2 ⋅y Me2CO (y≈1.6) contains five unique complex molecules, four of which undergo gradual SCO in at least two discrete steps. Low-spin 1[ClO4]2 ⋅0.5 Me2CO is not isostructural with its BF4− congener, and undergoes single-crystal-to-single-crystal solvent loss with a tripling of the crystallographic unit cell volume, while retaining the P space group. Three other solvate salts undergo gradual thermal SCO. Two of these are isomorphous at room temperature, but transform to different low-temperature phases when the materials are fully low-spin. 相似文献
13.
Tkachev V. V. Sayapin Yu. A. Gusakov E. A. Tupaeva I. O. Krasnikova T. A. Shilov G. V. Komissarov V. N. Aldoshin S. M. Minkin V. I. 《Russian Journal of General Chemistry》2022,92(2):206-211
Russian Journal of General Chemistry - Acylation of 5,7-di(tert-butyl)-2-{5,8-dimethyl-4-[(3,5-dimethylphenyl)amino]quinolin-2-yl}-3-[(3,5-dimethylphenyl)amino]tropone leads to... 相似文献
14.
Donzello MP De Mori G Viola E Ercolani C Bodo E Mannina L Capitani D Rizzoli C Gontrani L Aquilanti G Kadish KM D'Angelo P 《Inorganic chemistry》2011,50(23):12116-12125
The solid state and solution structure of 2,3-dicyano-5,6-di(2-thienyl)-1,4-pyrazine, [(CN)(2)Th(2)Pyz], and its Pd(II) derivative, [(CN)(2)Th(2)Pyz(PdCl(2))(2)]·H(2)O, formed by reaction of [(CN)(2)Th(2)Pyz] with [(C(6)H(5)CN)(2)PdCl(2)] were characterized by X-ray, UV-visible, (1)H and (13)C NMR, and extended X-ray absorption fine structure (EXAFS) spectral measurements. The X-ray crystal structure of [(CN)(2)Th(2)Pyz] shows the presence of one thienyl ring positioned orthogonal to the rest of the molecule, with the two vicinal thienyl rings lying orthogonal to each other in a rare arrangement. NMR studies of [(CN)(2)Th(2)Pyz] in the solid state and in solutions of dimethylformamide or dimethyl sulfoxide confirm a nonequivalence of the thienyl rings in the solid state and also in solution. EXAFS results indicate that two distinct Pd(II) coordination sites are formed at the di(2-thienyl)pyrazino moiety of [(CN)(2)Th(2)Pyz(PdCl(2))(2)]·H(2)O, with identical Pd-N(pyz) (2.03(3) ?) and Pd-Cl (2.36(3) ?) bond lengths but with different Pd-S1 (2.25(4) ?) and Pd-S2 (3.21(5) ?) bond distances in an overall asymmetric molecular framework. Density functional theory (DFT) and time-dependent DFT (TDDFT) theoretical studies also provide information about the structure and spectral behavior of the precursor and its metalated Pd(II) derivative. (1)H/(13)C NMR and UV-visible spectral measurements were also carried out on two heteropentametallic porphyrazine macrocycles which were prepared by a reaction of PdCl(2) with [Th(8)TPyzPzM] where Th(8)TPyzPz = tetrakis-2,3-[5,6-di-(2-thienyl)-pyrazino]porphyrazinato dianion and M = Mg(II)(H(2)O) or Zn(II). Spectroscopic data on the newly synthesized [(PdCl(2))(4)Th(8)TPyzPzM] compounds suggest that the binding of PdCl(2) involves coordination sites of the type S(2(th))PdCl(2) with the two thienyl rings of each di(2-thienyl)pyrazino fragment bound to Pd(II) in an equivalent manner ("th-th" coordination). This is similar to what was found for the corresponding octapyridinated analogues ("py-py" coordination). 相似文献
15.
16.
17.
18.
The reaction of 2,3-di(2-pyridyl)-5,6-diphenylpyrazine (dpdpz) with K(2)PtCl(4) in a mixture of acetonitrile and water afforded mono-Pt complex (dpdpz)PtCl(2)4 in good yield, with two lateral pyridine nitrogen atoms binding to the metal center. Two types of Ru(II)-Pt(II) heterodimetallic complexes bridged by dpdpz, namely, [(bpy)(2)Ru(dpdpz)Pt(C≡CC(6)H(4)R)](2+) (7-9, R = H, NMe(2), or Cl, respectively) and [(tpy)Ru(dpdpz)Pt(C≡CPh)] (+) (12), were then designed and prepared, where bpy = 2,2'-bipyridine and tpy = 2,2';6',2'-terpyridine. In both cases, the platinum atom binds to dpdpz with a C(∧)N(∧)N tridentate mode. However, the coordination of the ruthenium atom with dpdpz could either be noncyclometalated (N(∧)N bidentate) or cyclometalated (C(∧)N(∧)N tridentate). The electronic properties of these complexes were subsequently studied and compared by spectroscopic and electrochemical analyses and theoretical calculations. These complexes exhibit substantial absorption in the visible to NIR (near-infrared) region because of mixed MLCT (metal-to-ligand-charge-tranfer) transitions from both the ruthenium and the platinum centers. Complexes 7 and 9 were found to emit NIR light with higher quantum yields than those of the mono-Ru complex [(bpy)(2)Ru(dpdpz)](2+) (5) and bis-Ru complex [(bpy)(2)Ru(dpdpz)Ru(bpy)(2)](4+) (13). However, no emission was detected from complex 8 or 12 at room temperature in acetonitrile. 相似文献
19.