首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
本文采用TVD格式求解二维可压非定常Euler方程组,对二维超声速混压式进气道进行了数值计算,首先模拟了后部压力对进气道的影响过程,当进气道的后部压力与入口压力的比值逐渐增加时,进气道内的正激波逐渐往前移动,当比值达到一个临界值,进气道将不起动.其次.通过对R52.1和R54.5两种进气道模型进行计算,对它们的总压恢复进行了对比.通过计算得到了喉道处曲线弧的曲率越大,进气道的总压损失越大,进气道也越难起动.  相似文献   

2.
The growth of two-dimensional disturbances generated in a supersonic (M = 6) boundary layer on a flat plate by a periodic perturbation of the injection/suction type is investigated on the basis of a numerical solution of the Navier-Stokes equations. For small initial perturbation amplitudes, the second-mode growth rate obtained from the numerical modeling coincides with the growth rate calculated using linear theory with account for the non-parallelism of the main flow. Calculations performed for large initial perturbation amplitudes reveal the nonlinear dynamics of the perturbation growth downstream, with rapid growth of the higher multiple harmonics.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, 2004, pp. 33–44. Original Russian Text Copyright © 2004 by Egorov, Sudakov, Fedorov.  相似文献   

3.
The existence of shock–turbulent boundary layer interactions lead to very complicated flow phenomena and pose a challenge for numerical simulation. In this paper, two turbulence models, the Baldwin–Lomax (B–L) model and the Johnson–King (J–K) model, which were originally developed for simple external flow simulation, are modified to model complex high-speed internal separated flows. The full Navier–Stokes solver used in this paper is based on a cell-centered finite volume method and multistepping time marching scheme. Both implicit residual smoothing and local time stepping techniques are incorporated to accelerate the convergence rate. To ensure the numerical stability with the present explicit scheme, a point-implicit treatment to the source term in the ordinary differential equation (ODE) of the J–K model has been developed and has proved to be very effective in modeling such a complex flow. An arc-bump channel flow case has been studied. Comparisons of computed results with experimental data show that the present solver, with the modified turbulence models, predicts the shock and the flow separation very well. The J–K model is found to predict the size of the separation bubble with a higher accuracy. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
Stability of a supersonic (M = 5.373) boundary layer with local separation in a compression corner with a passive porous coating partly absorbing flow perturbations is considered by solving two-dimensional Navier-Stokes equations numerically. The second mode of disturbances of a supersonic boundary layer is demonstrated to be the most important one behind the boundary-layer reattachment point. The possibility of effective stabilization of these disturbances behind the reattachment point with the use of porous coatings is confirmed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 2, pp. 39–47, March–April, 2007.  相似文献   

5.
The receptivity of a supersonic (M = 6) boundary layer on a flat plate to acoustic disturbances is investigated on the basis of a numerical solution of the 2D Navier-Stokes equations. Numerical results obtained for fast and slow acoustic waves impinging on the plate at zero angle agree qualitatively with asymptotic theory. Calculations carried out for other angles of incidence of the acoustic waves reveal new features of the perturbation field in the neighborhood of the leading edge of the plate. It is shown that, due to visco-inviscid interaction, the shock formed near the leading edge may significantly affect the acoustic field and the receptivity.  相似文献   

6.
The gap effect is a key factor in the design of the heat sealing in supersonic vehicles subjected to an aerodynamic heat load. Built on S-A turbulence model and Roe discrete format, the aerodynamic environment around a gap on the surface of a supersonic aircraft was simulated by the finite volume method. As the presented results indicate, the gap effect depends not only on the attack angle, but also on the Mach number.  相似文献   

7.
Large eddy simulation (LES) is a viable and powerful tool to analyse unsteady three-dimensional turbulent flows. In this article, the method of LES is used to compute a plane turbulent supersonic boundary layer subjected to different pressure gradients. The pressure gradients are generated by allowing the flow to pass in the vicinity of an expansion–compression ramp (inclined backward-facing step with leeward-face angle of 25°) for an upstream Mach number of 2.9. The inflow boundary condition is the main problem for all turbulent wall-bounded flows. An approach to solve this problem is to extract instantaneous velocities, temperature and density data from an auxiliary simulation (inflow generator). To generate an appropriate realistic inflow condition to the inflow generator itself the rescaling technique for compressible flows is used. In this method, Morkovin's hypothesis, in which the total temperature fluctuations are neglected compared with the static temperature fluctuations, is applied to rescale and generate the temperature profile at inlet. This technique was successfully developed and applied by the present author for an LES of subsonic three-dimensional boundary layer of a smooth curved ramp. The present LES results are compared with the available experimental data as well as numerical data. The positive impact of the rescaling formulation of the temperature is proven by the convincing agreement of the obtained results with the experimental data compared with published numerical work and sheds light on the quality of the developed compressible inflow generator.  相似文献   

8.
The spatial evolution of 2-D disturbances in supersonic sharp cone boundary layers was investigated by direct numerical simulation (DNS) in high order compact difference scheme. The results suggested that, although the normal velocity in the sharp cone boundary layer was not small, the evolution of amplitude and phase for small amplitude disturbances would be well in accordance with the results obtained by the linear stability theory (LST) which supposes the flow was parallel. The evolution of some finite amplitude disturbances was also investigated, and the characteristic of the evolution was shown. Shocklets were also found when the amplitude of disturbances increased over some value.  相似文献   

9.
On the basis of a numerical solution of the two-dimensional Navier-Stokes equations, the stability and the receptivity of a supersonic (M = 6) boundary layer on a flat plate with a passive porous coating partially absorbing flow disturbances is studied. The results of direct numerical simulation are in good agreement with the data of the linear stability theory. The studies confirm the possibility of effectively stabilizing the second mode of the supersonic boundary layer using porous coatings.  相似文献   

10.
The performance of implicit large eddy simulation (ILES) of a supersonic flat-plate turbulent boundary layer flow by weighted compact nonlinear scheme (WCNS) has been investigated. In view of features of WCNS and ILES, it was expected that ILES by WCNS could be an efficient approach to perform LES of supersonic turbulent flows. The flowfield calculated by WCNS was of lower turbulent intensity compared with an explicit LES data obtained by a numerical scheme of the same order of accuracy on a computational grid of similar resolution. It was concluded that the numerical dissipation inherent in WCNS is so large that applying WCNS to ILES of this flowfield is inefficient compared with explicit LES.  相似文献   

11.
脉冲爆震发动机进气道气动性能的数值研究   总被引:4,自引:0,他引:4  
王丁喜  严传俊 《力学学报》2005,37(6):777-782
采用有限体积法计算了脉冲爆震发动机某轴对称超音速进气道在3种 不同出口条件(单个正弦扰动压力、某脉冲爆震发动机爆震室头部表压和进气道出口堵塞) 下的进气道内结尾正激波的运动情况,得出了进气道内结尾正激波运动特性和不同出口条件 的关系. 在计算中,采用了多块结构化网格,控制体积的界面无黏通量采用三阶迎风格 式插值获得,同时采用了minmod通量限制器以确保在激波处的解的物理特性;扩散通量采 用二阶中心差分格式插值获得. 定常计算采用当地时间步法,非定常计算采用双时间步法. 离散的代数方程采用交替方向迭代法求解。  相似文献   

12.
The effect of the temperature factor, that is, the ratio of the body temperature to the freestream stagnation temperature, on the structure of the separated flow formed in the presence of a concave corner in a supersonic stream is studied. The strong influence of the temperature factor on the separation zone length and the flow-generated aerodynamic characteristics is established. It is shown that for fairly large deflection angles this flow cannot be described by free interaction, or triple deck, theory.  相似文献   

13.
For direct numerical simulation (DNS) of turbulent boundary layers, gen- eration of an appropriate inflow condition needs to be considered. This paper proposes a method, with which the inflow condition for spatial-mode DNS of turbulent boundary layers on supersonic blunt cones with different Mach numbers, Reynolds numbers and wall temperature conditions can be generated. This is based only on a given instant flow field obtained by a temporal-mode DNS of a turbulent boundary layer on a flat plate. Effectiveness of the method is shown in three typical examples by comparing the results with those obtained by other methods.  相似文献   

14.
Numerical simulation of a two‐dimensional mixed compression supersonic inlet is carried out by solving unsteady compressible Euler equations via a stabilized finite element method. The geometry of the inlet is similar to the one used by Anderson and Wong for experimental investigation for Mach 3 flow. The computations are capable of simulating the start‐up problems associated with the inlet. The critical back pressure for the successful operation of the inlet is computed. The effect of inlet back pressure on the total pressure recovery and the flow distortion level is analysed. Contrary to the popular belief, it is found that in addition to the throat to inlet capture area ratio, the ramp geometry close to the throat plays an important role in the start‐up dynamics. It is demonstrated via simulations that, everything else being same, the geometries of ramp upstream of the throat that are associated with a curvature higher than a certain threshold, result in unstarting the intake. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The dynamical behavior of two tethered rigid spheres in a supersonic flow is numerically investigated. The tethered lengths and radius ratios of the two spheres are different. The two spheres, which are centroid axially aligned initially, are held stationary first, then released, and subsequently let fly freely in a supersonic flow. The mean qualities of the system and the qualities of the bigger sphere are considered and compared with the situations without the tether. In the separation process, six types of motion caused by the spheres, tether, and fluid interaction are found. The results show that the mean x-velocity of the system changes in a different manner for different radius ratios, and the x-velocity of the bigger sphere is uniformly reduced but through different mechanisms.  相似文献   

16.
The non-free interaction between a shock wave and the boundary layer on a swept plate set at incidence in the undisturbed flow is studied using different experimental methods including special laser techniques for visualizing supersonic conical gas flows. It is shown that under shock-layer conditions the non-free interaction can lead to conical flow breakdown before the incident shock reaches the leading edge of the plate.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, 2004, pp. 45–58. Original Russian Text Copyright © 2004 by Zubin and Ostapenko.  相似文献   

17.
In this paper, the supersonic chemically reacting mixing layer is simulated with the third order ENN scheme, based on the Navier-Stokes equations, containing transport equations of all species. The numerical results show that the thickness of mixing layer increases gradually along the flow direction, and that the Kelvin-Helmholtz instabilities may not exist in mixing layer flows. The project supported by the National Natural Science Foundation of China  相似文献   

18.
The two-dimensional problem of supersonic air flow past a spherical electrode is considered on the basis of a joint solution of the Navier-Stokes equations for a neutral gas and the charged-particle transport equations in the diffusion-drift approximation. The self-sustained discharge is considered in the cathode regime of operation of the test electrode in a formulation analogous to that of the experimental study [1]. The thermal and non-thermal (action of the electrostatic force in the cathode layer of the space charge) mechanisms of action of the discharge on the flow field are investigated. Within the framework of the numerical model considered the effect of the electrostatic force turns out to be negligibly small and the main effect of the action on the flow is the heat release driven by the electric currents. The influence of the discharge on the flow field was manifested itself in a reduction of the aerodynamic drag by up to 25%.  相似文献   

19.
Supersonic flows past two-dimensional cavities with/without control are investigated by the direct numerical simulation(DNS). For an uncontrolled cavity, as the thickness of the boundary layer declines, transition of the dominant mode from the steady mode to the Rossiter Ⅱ mode and then to the Rossiter Ⅲ mode is observed due to the change of vortex-corner interactions. Meanwhile, a low frequency mode appears. However, the wake mode observed in a subsonic cavity flow is absent in the current simulation.The oscillation frequencies obtained from a global dynamic mode decomposition(DMD)approach are consistent with the local power spectral density(PSD) analysis. The dominant mode transition is clearly shown by the dynamic modes obtained from the DMD. A passive control technique of substituting the cavity trailing edge with a quarter-circle is studied. As the effective cavity length increases, the dominant mode transition from the Rossiter Ⅱ mode to the Rossiter Ⅲ mode occurs. With the control, the pressure oscillations are reduced significantly. The interaction of the shear layer and the recirculation zone is greatly weakened, combined with weaker shear layer instability, responsible for the suppression of pressure oscillations. Moreover, active control using steady subsonic mass injection upstream of a cavity leading edge can stabilize the flow.  相似文献   

20.
We follow the unstable manifold of periodic and quasi-periodic solutions in time for the Poiseuille problem, using two formulations: holding a constant flux or mean pressure gradient. By means of a numerical integrator of the Navier–Stokes equations, we let the fluid evolve from an initially perturbed unstable solution until the fluid reaches an attracting state. Thus, we detect several connections among different configurations of the flow such as laminar, periodic, quasi-periodic with two or three basic frequencies, and more complex sets that we have not been able to classify. These connections make possible the location of new families of solutions, usually hard to find by means of numerical continuation of curves, and show the richness of the dynamics of the Poiseuille flow. PACS 05.45.-a, 47.11.+j, 47.20.-k, 47.20.Ft  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号