首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let n be the order of a Hadamard design, and G any finite group. Then there exists many non-isomorphic Hadamard designs of order 212|G| + 13 n with automorphism group isomorphic to G.This research was supported in part by the National Science Foundation.  相似文献   

2.
If there is a Hadamard design of order n, then there are at least 28n−16−9log n non-isomorphic Hadamard designs of order 2n. Mathematics Subject Classificaion 2000: 05B05  相似文献   

3.
This article derives from first principles a definition of equivalence for higher‐dimensional Hadamard matrices and thereby a definition of the automorphism group for higher‐dimensional Hadamard matrices. Our procedure is quite general and could be applied to other kinds of designs for which there are no established definitions for equivalence or automorphism. Given a two‐dimensional Hadamard matrix H of order ν, there is a Product Construction which gives an order ν proper n‐dimensional Hadamard matrix P(n)(H). We apply our ideas to the matrices P(n)(H). We prove that there is a constant c > 1 such that any Hadamard matrix H of order ν > 2 gives rise via the Product Construction to cν inequivalent proper three‐dimensional Hadamard matrices of order ν. This corrects an erroneous assertion made in the literature that ”P(n)(H) is equivalent to “P(n)(H′) whenever H is equivalent to H′.” We also show how the automorphism group of P(n)(H) depends on the structure of the automorphism group of H. As an application of the above ideas, we determine the automorphism group of P(n)(Hk) when Hk is a Sylvester Hadamard matrix of order 2k. For ν = 4, we exhibit three distinct families of inequivalent Product Construction matrices P(n)(H) where H is equivalent to H2. These matrices each have large but non‐isomorphic automorphism groups. © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 507–544, 2008  相似文献   

4.
It is well‐known that the number of designs with the parameters of a classical design having as blocks the hyperplanes in PG(n, q) or AG(n, q), n≥3, grows exponentially. This result was extended recently [D. Jungnickel, V. D. Tonchev, Des Codes Cryptogr, published online: 23 May, 2009] to designs having the same parameters as a projective geometry design whose blocks are the d‐subspaces of PG(n, q), for any 2≤dn−1. In this paper, exponential lower bounds are proved on the number of non‐isomorphic designs having the same parameters as an affine geometry design whose blocks are the d‐subspaces of AG(n, q), for any 2≤dn−1, as well as resolvable designs with these parameters. An exponential lower bound is also proved for the number of non‐isomorphic resolvable 3‐designs with the same parameters as an affine geometry design whose blocks are the d‐subspaces of AG(n, 2), for any 2≤dn−1. © 2010 Wiley Periodicals, Inc. J Combin Designs 18: 475–487, 2010  相似文献   

5.
6.
It is well known that the number of designs with the parameters of a classical design having as blocks the hyperplanes in PG(n, q) or AG(n, q), n?3, grows exponentially. This result was extended recently [5] to designs having the same parameters as a projective geometry design whose blocks are the d‐subspaces of PG(n, q), for any 2?d?n ? 1. In this paper, exponential lower bounds are proved on the number of non‐isomorphic designs having the same parameters as an affine geometry design whose blocks are the d‐subspaces of AG(n, q), for any 2≤dn ? 1. Exponential bounds are also proved for the number of resolvable designs with these parameters. © 2011 Wiley Periodicals, Inc. J Combin Designs 19:156‐166, 2011  相似文献   

7.
Wieferich pairs and Barker sequences   总被引:1,自引:0,他引:1  
We show that if a Barker sequence of length n > 13 exists, then either n = 189 260 468 001 034 441 522 766 781 604, or n > 2 · 1030. This improves the lower bound on the length of a long Barker sequence by a factor of more than 107. We also show that all but fewer than 1600 integers n ≤ 4 · 1026 can be eliminated as the order of a circulant Hadamard matrix. These results are obtained by completing extensive searches for Wieferich prime pairs (q, p), which are defined by the relation qp-1 o 1{q^{p-1} \equiv1} mod p 2, and analyzing their results in combination with a number of arithmetic restrictions on n.  相似文献   

8.
For a polytope in the [0,1] n cube, Eisenbrand and Schulz showed recently that the maximum Chvátal rank is bounded above by O(n 2logn) and bounded below by (1+ε)n for some ε>0. Chvátal cuts are equivalent to Gomory fractional cuts, which are themselves dominated by Gomory mixed integer cuts. What do these upper and lower bounds become when the rank is defined relative to Gomory mixed integer cuts? An upper bound of n follows from existing results in the literature. In this note, we show that the lower bound is also equal to n. This result still holds for mixed 0,1 polyhedra with n binary variables. Received: March 15, 2001 / Accepted: July 18, 2001?Published online September 17, 2001  相似文献   

9.
Two-dimensional minimax Latin hypercube designs   总被引:1,自引:0,他引:1  
We investigate minimax Latin hypercube designs in two dimensions for several distance measures. For the ?-distance we are able to construct minimax Latin hypercube designs of n points, and to determine the minimal covering radius, for all n. For the ?1-distance we have a lower bound for the covering radius, and a construction of minimax Latin hypercube designs for (infinitely) many values of n. We conjecture that the obtained lower bound is attained, except for a few small (known) values of n. For the ?2-distance we have generated minimax solutions up to n=27 by an exhaustive search method. The latter Latin hypercube designs are included in the website www.spacefillingdesigns.nl.  相似文献   

10.
In this article, we consider the maximum cocliques of the 211: M24 ‐graph Λ. We show that the maximum cocliques of size 24 of Λ can be obtained from two Hadamard matrices of size 24, and that there are exactly two maximum cocliques up to equivalence. We verify that the two nonisomorphic designs with parameters 5‐(24,9,6) can be constructed from the maximum cocliques of Λ, and that these designs are isomorphic to the support designs of minimum weights of the ternary extended quadratic residue and Pless symmetry [24,12,9] codes. Further, we give a new construction of Λ from these 5‐(24,9,6) designs. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 323–332, 2009  相似文献   

11.
Abstact: We introduce generalizations of earlier direct methods for constructing large sets of t‐designs. These are based on assembling systematically orbits of t‐homogeneous permutation groups in their induced actions on k‐subsets. By means of these techniques and the known recursive methods we construct an extensive number of new large sets, including new infinite families. In particular, a new series of LS[3](2(2 + m), 8·3m ? 2, 16·3m ? 3) is obtained. This also provides the smallest known ν for a t‐(ν, k, λ) design when t ≥ 16. We present our results compactly for ν ≤ 61, in tables derived from Pascal's triangle modulo appropriate primes. © 2000 John Wiley & Sons, Inc. J Combin Designs 9: 40–59, 2001  相似文献   

12.
R. J. Turyn introduced complex Hadamard matrices and showed that if there is a complex Hadamard matrix of order c and a real Hadamard matrix of order h> > 1, then there is a real Hadamard matrix of order he. Previously, complex Hadamard matrices were only known for a few small orders and the orders for which symmetric conference matrices were known. These latter are known only to exist for orders which can be written as 1+a2 +b2 where a, b are integers. We give many constructions for new infinite classes of complex Hadamard matrices and show that they exist for orders 306,650, 870,1406,2450 and 3782: for the orders 650, 870, 2450 and 3782, a symmetric conference matrix cannot exist.  相似文献   

13.
We show that 138 odd values of n<10000 for which a Hadamard matrix of order 4n exists have been overlooked in the recent handbook of combinatorial designs. There are four additional odd n=191, 5767, 7081, 8249 in that range for which Hadamard matrices of order 4n exist. There is a unique equivalence class of near‐normal sequences NN(36), and the same is true for NN(38) and NN(40). This means that the Yang conjecture on the existence of near‐normal sequences NN(n) has been verified for all even n⩽40, but it still remains open. © 2010 Wiley Periodicals, Inc. J Combin Designs 18: 254–259, 2010  相似文献   

14.
In this article, we examine the possible orders of t‐subset‐regular self‐complementary k‐uniform hypergraphs, which form examples of large sets of two isomorphic t‐designs. We reformulate Khosrovshahi and Tayfeh–Rezaie's necessary conditions on the order of these structures in terms of the binary representation of the rank k, and these conditions simplify to a more transparent relation between the order n and rank k in the case where k is a sum of consecutive powers of 2. Moreover, we present new constructions for 1‐subset‐regular self‐complementary uniform hypergraphs, and prove that these necessary conditions are sufficient for all k, in the case where t = 1. © 2011 Wiley Periodicals, Inc. J Combin Designs 19: 439‐454, 2011  相似文献   

15.
Let ck = crk (G) denote the minimum number of edge crossings when a graph G is drawn on an orientable surface of genus k. The (orientable) crossing sequence co, c1,c2…encodes the trade‐off between adding handles and decreasing crossings. We focus on sequences of the type co > c1 > c2 = 0; equivalently, we study the planar and toroidal crossing number of doubly‐toroidal graphs. For every ? > 0 we construct graphs whose orientable crossing sequence satisfies c1/co > 5/6??. In other words, we construct graphs where the addition of one handle can save roughly 1/6th of the crossings, but the addition of a second handle can save five times more crossings. We similarly define the non‐orientable crossing sequence ?0,?1,?2, ··· for drawings on non‐orientable surfaces. We show that for every ?0 > ?1 > 0 there exists a graph with non‐orientable crossing sequence ?0, ?1, 0. We conjecture that every strictly‐decreasing sequence of non‐negative integers can be both an orientable crossing sequence and a non‐orientable crossing sequence (with different graphs). © 2001 John Wiley & Sons, Inc. J Graph Theory 38: 230–243, 2001  相似文献   

16.
A Steiner quadruple system of order 2n is Semi‐Boolean (SBQS(2n) in short) if all its derived triple systems are isomorphic to the point‐line design associated with the projective geometry PG(n?1, 2). We prove by means of explicit constructions that for any n, up to isomorphism, there exist at least 2? 3(n?4)/2? regular and resolvable SBQS(2n). © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 229–239, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10050  相似文献   

17.
Many classes of symmetric transversal designs have been constructed from generalized Hadamard matrices and they are necessarily class regular. In (Hiramine, Des Codes Cryptogr 56:21–33, 2010) we constructed symmetric transversal designs using spreads of \mathbbZp2n{\mathbb{Z}_p^{2n}} with p a prime. In this article we show that most of them admit no class regular automorphism groups. This implies that they are never obtained from generalized Hadamard matrices. As far as we know, this is the first infinite family of non class-regular symmetric transversal designs.  相似文献   

18.
F. Bry (J. Combin. Theory Ser. B 34 (1983), 48–57) proved that a locally finite infinite n-connected factorizable graph has at least (n−1)! 1-factors and showed that for n = 2 this lower bound is sharp. We prove that for n≥3 any infinite n-connected factorizable graph has at least n! 1-factors (which is a sharp lower bound).  相似文献   

19.
We continue the analysis of de Launey's modification of development of designs modulo a finite groupH by the action of an abelian extension function (AEF), and of the proper higher dimensional designs which result.We extend the characterization of allAEFs from the cyclic group case to the case whereH is an arbitrary finite abelian group.We prove that ourn-dimensional designs have the form (f(j 1 j 2 ...j n )) (j i J), whereJ is a subset of cardinality |H| of an extension groupE ofH. We say these designs have a weak difference set construction.We show that two well-known constructions for orthogonal designs fit this development scheme and hence exhibit families of such Hadamard matrices, weighing matrices and orthogonal designs of orderv for which |E|=2v. In particular, we construct proper higher dimensional Hadamard matrices for all orders 4t100, and conference matrices of orderq+1 whereq is an odd prime power. We conjecture that such Hadamard matrices exist for all ordersv0 mod 4.  相似文献   

20.
We present a new technique for constructing binary error correcting codes and give some examples of codes that can be constructed via this method. Among the examples is an infinite family of self-complementary codes with parameters (2u 2u, 8u 2, u 2u) that can be constructed whenever there exists a u × u Hadamard Matrix. These codes meet the Grey–Rankin bound and imply the existence of quasi-symmetric designs on 2u 2u points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号