共查询到20条相似文献,搜索用时 0 毫秒
1.
A high‐order Petrov–Galerkin finite element scheme is presented to solve the one‐dimensional depth‐integrated classical Boussinesq equations for weakly non‐linear and weakly dispersive waves. Finite elements are used both in the space and the time domains. The shape functions are bilinear in space–time, whereas the weighting functions are linear in space and quadratic in time, with C0‐continuity. Dispersion correction and a highly selective dissipation mechanism are introduced through additional streamline upwind terms in the weighting functions. An implicit, conditionally stable, one‐step predictor–corrector time integration scheme results. The accuracy and stability of the non‐linear discrete equations are investigated by means of a local Taylor series expansion. A linear spectral analysis is used for the full characterization of the predictor–corrector inner iterations. Based on the order of the analytical terms of the Boussinesq model and on the order of the numerical discretization, it is concluded that the scheme is fourth‐order accurate in terms of phase velocity. The dissipation term is third order only affecting the shortest wavelengths. A numerical convergence analysis showed a second‐order convergence rate in terms of both element size and time step. Four numerical experiments are addressed and their results are compared with analytical solutions or experimental data available in the literature: the propagation of a solitary wave, the oscillation of a flat bottom closed basin, the oscillation of a non‐flat bottom closed basin, and the propagation of a periodic wave over a submerged bar. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
2.
The Petrov–Galerkin method has been developed with the primary goal of damping spurious oscillations near discontinuities in advection dominated flows. For time‐dependent problems, the typical Petrov–Galerkin method is based on the minimization of the dispersion error and the simultaneous selective addition of dissipation. This optimal design helps to dampen the oscillations prevalent near discontinuities in standard Bubnov–Galerkin solutions. However, it is demonstrated that when the Courant number is less than 1, the Petrov–Galerkin method actually amplifies undershoots at the base of discontinuities. This is shown in an heuristic manner, and is demonstrated with numerical experiments with the scalar advection and Richards' equations. A discussion of monotonicity preservation as a design criterion, as opposed to phase or amplitude error minimization, is also presented. The Petrov–Galerkin method is further linked to the high‐resolution, total variation diminishing (TVD) finite volume method in order to obtain a monotonicity preserving Petrov–Galerkin method. 相似文献
3.
In this paper, Navier–Stokes fluid flows in curved channels are considered. Upstream of the backward‐facing step, there exists a channel with a 90° bend and a fixed curvature of 2.5. The purpose of conducting this study was to apply a finite element code to study the effect of the distorted upstream velocity profile developing over the bend on laminar expansion flows behind the step. The size of the eddies formed downstream of the step is addressed. The present work employs primitive velocities, which stagger the pressure working variable, to assure satisfaction of the inf–sup stability condition. In quadratic elements, spatial derivatives are approximated within the consistent Petrov–Galerkin finite element framework. Use of this method aids stability in the sense that artificial damping is solely added to the direction parallel to the flow direction. Through analytical testing, in conjunction with two other benchmark tests, the integrity of applying the computer code in quadratic elements is verified. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
4.
Time‐accurate stabilized finite‐element model for weakly nonlinear and weakly dispersive water waves
Introduction of a time‐accurate stabilized finite‐element approximation for the numerical investigation of weakly nonlinear and weakly dispersive water waves is presented in this paper. To make the time approximation match the order of accuracy of the spatial representation of the linear triangular elements by the Galerkin finite‐element method, the fourth‐order time integration of implicit multistage Padé method is used for the development of the numerical scheme. The streamline‐upwind Petrov–Galerkin (SUPG) method with crosswind diffusion is employed to stabilize the scheme and suppress the spurious oscillations, usually common in the numerical computation of convection‐dominated flow problems. The performance of numerical stabilization and accuracy is addressed. Treatments of various boundary conditions, including the open boundary conditions, the perfect reflecting boundary conditions along boundaries with irregular geometry, are also described. Numerical results showing the comparisons with analytical solutions, experimental measurements, and other published numerical results are presented and discussed. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
5.
In this paper, we develop a finite element model for solving the convection–diffusion‐reaction equation in two dimensions with an aim to enhance the scheme stability without compromising consistency. Reducing errors of false diffusion type is achieved by adding an artificial term to get rid of three leading mixed derivative terms in the Petrov–Galerkin formulation. The finite element model of the Petrov–Galerkin type, while maintaining convective stability, is modified to suppress oscillations about the sharp layer by employing the M‐matrix theory. To validate this monotonic model, we consider test problems which are amenable to analytic solutions. Good agreement is obtained with both one‐ and two‐dimensional problems, thus validating the method. Other problems suitable for benchmarking the proposed model are also investigated. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
6.
This paper presents the numerical results concerning the adaptation of the non‐linear Galerkin method to three‐dimensional geophysical fluid equations. This method was developed by Marion and Temam to solve the Navier–Stokes two‐dimensional equations. It allows a substantial decrease in calculation costs due to the application of an appropriate treatment to each mode based on its position in the spectrum. The large scales involved in the study of geophysical flow require that the earth's rotational effects and the existence of a high degree of stratification be taken into account. These phenomena play an important role in the distribution of the energy spectrum. It is shown here that the non‐linear Galerkin method is very well‐suited to the treatment of these phenomena. First, the method for the particular situation of a rigid‐lid with a flat bottom is validated, for which the functional basis used is particularly well‐adapted. Then the more general case of a domain exhibiting variable bathymetry is presented, which necessitates the use of the transformation σ, thus providing a study domain with a cylindrical configuration. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
7.
This paper investigates preconditioned iterative techniques for finite difference solutions of a high‐order Boussinesq method for modelling water waves in two horizontal dimensions. The Boussinesq method solves simultaneously for all three components of velocity at an arbitrary z‐level, removing any practical limitations based on the relative water depth. High‐order finite difference approximations are shown to be more efficient than low‐order approximations (for a given accuracy), despite the additional overhead. The resultant system of equations requires that a sparse, unsymmetric, and often ill‐conditioned matrix be solved at each stage evaluation within a simulation. Various preconditioning strategies are investigated, including full factorizations of the linearized matrix, ILU factorizations, a matrix‐free (Fourier space) method, and an approximate Schur complement approach. A detailed comparison of the methods is given for both rotational and irrotational formulations, and the strengths and limitations of each are discussed. Mesh‐independent convergence is demonstrated with many of the preconditioners for solutions of the irrotational formulation, and solutions using the Fourier space and approximate Schur complement preconditioners are shown to require an overall computational effort that scales linearly with problem size (for large problems). Calculations on a variable depth problem are also compared to experimental data, highlighting the accuracy of the model. Through combined physical and mathematical insight effective preconditioned iterative solutions are achieved for the full physical application range of the model. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
8.
This paper describes an edge‐based implementation of the generalized residual minimum (GMRES) solver for the fully coupled solution of non‐linear systems arising from finite element discretization of shallow water equations (SWEs). The gain in terms of memory, floating point operations and indirect addressing is quantified for semi‐discrete and space–time analyses. Stabilized formulations, including Petrov–Galerkin models and discontinuity‐capturing operators, are also discussed for both types of discretization. Results illustrating the quality of the stabilized solutions and the advantages of using the edge‐based approach are presented at the end of the paper. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
9.
This paper presents a two‐dimensional finite element model for simulating dynamic propagation of weakly dispersive waves. Shallow water equations including extra non‐hydrostatic pressure terms and a depth‐integrated vertical momentum equation are solved with linear distributions assumed in the vertical direction for the non‐hydrostatic pressure and the vertical velocity. The model is developed based on the platform of a finite element model, CCHE2D. A physically bounded upwind scheme for the advection term discretization is developed, and the quasi second‐order differential operators of this scheme result in no oscillation and little numerical diffusion. The depth‐integrated non‐hydrostatic wave model is solved semi‐implicitly: the provisional flow velocity is first implicitly solved using the shallow water equations; the non‐hydrostatic pressure, which is implicitly obtained by ensuring a divergence‐free velocity field, is used to correct the provisional velocity, and finally the depth‐integrated continuity equation is explicitly solved to satisfy global mass conservation. The developed wave model is verified by an analytical solution and validated by laboratory experiments, and the computed results show that the wave model can properly handle linear and nonlinear dispersive waves, wave shoaling, diffraction, refraction and focusing. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
10.
Boussinesq models describe the phase‐resolved hydrodynamics of unbroken waves and wave‐induced currents in shallow coastal waters. Many enhanced versions of the Boussinesq equations are available in the literature, aiming to improve the representation of linear dispersion and non‐linearity. This paper describes the numerical solution of the extended Boussinesq equations derived by Madsen and Sørensen (Coastal Eng. 1992; 15 :371–388) on Cartesian cut‐cell grids, the aim being to model non‐linear wave interaction with coastal structures. An explicit second‐order MUSCL‐Hancock Godunov‐type finite volume scheme is used to solve the non‐linear and weakly dispersive Boussinesq‐type equations. Interface fluxes are evaluated using an HLLC approximate Riemann solver. A ghost‐cell immersed boundary method is used to update flow information in the smallest cut cells and overcome the time step restriction that would otherwise apply. The model is validated for solitary wave reflection from a vertical wall, diffraction of a solitary wave by a truncated barrier, and solitary wave scattering and diffraction from a vertical circular cylinder. In all cases, the model gives satisfactory predictions in comparison with the published analytical solutions and experimental measurements. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
11.
A new finite element method for Nwogu's (O. Nwogu, ASCE J. Waterw., Port, Coast., Ocean Eng., 119 , 618–638 (1993)) one‐dimensional extended Boussinesq equations is presented using a linear element spatial discretisation method coupled with a sophisticated adaptive time integration package. The accuracy of the scheme is compared to that of an existing finite difference method (G. Wei and J.T. Kirby, ASCE J. Waterw., Port, Coast., Ocean Eng., 121 , 251–261 (1995)) by considering the truncation error at a node. Numerical tests with solitary and regular waves propagating in variable depth environments are compared with theoretical and experimental data. The accuracy of the results confirms the analytical prediction and shows that the new approach competes well with existing finite difference methods. The finite element formulation is shown to enable the method to be extended to irregular meshes in one dimension and has the potential to allow for extension to the important practical case of unstructured triangular meshes in two dimensions. This latter case is discussed. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
12.
13.
A new numerical method for Nwogu's (ASCE Journal of Waterway, Port, Coastal and Ocean Engineering 1993; 119 :618)two‐dimensional extended Boussinesq equations is presented using a linear triangular finite element spatial discretization coupled with a sophisticated adaptive time integration package. The authors have previously presented a finite element method for the one‐dimensional form of these equations (M. Walkley and M. Berzins (International Journal for Numerical Methods in Fluids 1999; 29 (2):143)) and this paper describes the extension of these ideas to the two‐dimensional equations and the application of the method to complex geometries using unstructured triangular grids. Computational results are presented for two standard test problems and a realistic harbour model. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
14.
15.
An accurate three‐dimensional numerical model, applicable to strongly non‐linear waves, is proposed. The model solves fully non‐linear potential flow equations with a free surface using a higher‐order three‐dimensional boundary element method (BEM) and a mixed Eulerian–Lagrangian time updating, based on second‐order explicit Taylor series expansions with adaptive time steps. The model is applicable to non‐linear wave transformations from deep to shallow water over complex bottom topography up to overturning and breaking. Arbitrary waves can be generated in the model, and reflective or absorbing boundary conditions specified on lateral boundaries. In the BEM, boundary geometry and field variables are represented by 16‐node cubic ‘sliding’ quadrilateral elements, providing local inter‐element continuity of the first and second derivatives. Accurate and efficient numerical integrations are developed for these elements. Discretized boundary conditions at intersections (corner/edges) between the free surface or the bottom and lateral boundaries are well‐posed in all cases of mixed boundary conditions. Higher‐order tangential derivatives, required for the time updating, are calculated in a local curvilinear co‐ordinate system, using 25‐node ‘sliding’ fourth‐order quadrilateral elements. Very high accuracy is achieved in the model for mass and energy conservation. No smoothing of the solution is required, but regridding to a higher resolution can be specified at any time over selected areas of the free surface. Applications are presented for the propagation of numerically exact solitary waves. Model properties of accuracy and convergence with a refined spatio‐temporal discretization are assessed by propagating such a wave over constant depth. The shoaling of solitary waves up to overturning is then calculated over a 1:15 plane slope, and results show good agreement with a two‐dimensional solution proposed earlier. Finally, three‐dimensional overturning waves are generated over a 1:15 sloping bottom having a ridge in the middle, thus focusing wave energy. The node regridding method is used to refine the discretization around the overturning wave. Convergence of the solution with grid size is also verified for this case. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
16.
A numerical method is described that may be used to determine the propagation characteristics of weakly non‐hydrostatic non‐linear free surface waves over a general, bottom topography. In shallow water of constant undisturbed depth, such waves are equivalent to the familiar cnoidal waves characterized by sharp crests and relatively flat troughs. For a certain range of parameters, these propagate without change of form by virtue of the weakly non‐hydrostatic balance in the vertical momentum equation. Effectively, this counters the tendency for the non‐linearity in a purely hydrostatic theory to lead to a continuously deforming surface wave profile. The realistic representation furnished by cnoidal wave theory of free surface waves in the shallow near‐shore zone has led to its utilization in evaluating their propagation characteristics. Nonetheless, the classic analytical theory is inapplicable to the case of wave propagation over a sloping beach or off‐shore sand bar topography. Under these conditions, a local change in form of the surface wave profile is anticipated before the waves break and knowing this is required in order to evaluate fully the propagation process. The efficacy of the numerical method is first demonstrated by comparing the solution for water of constant depth with the evaluation of the analytical solution expressed in terms of the Jacobian elliptic function cn. The general method described in the paper is then illustrated by experiments to determine the change in profile of weakly non‐hydrostatic non‐linear surface waves propagating over bed forms representative of those found in shallow coastal seas. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
17.
In this paper, the authors treat the free‐surface waves generated by a moving disturbance with a constant speed in water of finite and constant depth. Specifically, the case when the disturbance is moving with the critical speed is investigated. The water is assumed inviscid and its motion irrotational. The surface tension is neglected. It is well‐known that the linear theory breaks down when a disturbance is moving with the critical speed. As a remedy to overcome the invalid linear theory, approximate non‐linear theories have been applied with success in the past, i.e. Boussinesq and Korteweg de Vries equations, for example. In the present paper, the authors describe a finite element method applied to the non‐linear water‐wave problems in two dimensions. The present numerical method solves the exact non‐linear formulation in the scope of potential theory without any additional assumptions on the magnitude of the disturbances. The present numerical results are compared with those obtained by other approximate non‐linear theories. Also presented are the discussions on the validity of the existing approximate theories applied to two types of the disturbances, i.e. the bottom bump and the pressure patch on the free‐surface at the critical speed. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
18.
This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly non‐linear and extremely dispersive water waves. The analysis demonstrates the near‐equivalence of classical linear Fourier (von Neumann) techniques with matrix‐based methods for formulations in both one and two horizontal dimensions. The matrix‐based method is also extended to show the local de‐stabilizing effects of the non‐linear terms, as well as the stabilizing effects of numerical dissipation. A comparison of the relative stability of rotational and irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation has significantly better stability properties when the deep‐water non‐linearity is high, particularly on refined grids. Computation of matrix pseudospectra shows that the system is only moderately non‐normal, suggesting that the eigenvalues are likely suitable for analysis purposes. Numerical experiments demonstrate excellent agreement with the linear analysis, and good qualitative agreement with the local non‐linear analysis. The various methods of analysis combine to provide significant insight into the numerical behaviour of this rather complicated system of non‐linear PDEs. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
19.
An implicit method is developed for solving the complete three‐dimensional (3D) Navier–Stokes equations. The algorithm is based upon a staggered finite difference Crank‐Nicholson scheme on a Cartesian grid. A new top‐layer pressure treatment and a partial cell bottom treatment are introduced so that the 3D model is fully non‐hydrostatic and is free of any hydrostatic assumption. A domain decomposition method is used to segregate the resulting 3D matrix system into a series of two‐dimensional vertical plane problems, for each of which a block tri‐diagonal system can be directly solved for the unknown horizontal velocity. Numerical tests including linear standing waves, nonlinear sloshing motions, and progressive wave interactions with uneven bottoms are performed. It is found that the model is capable to simulate accurately a range of free‐surface flow problems using a very small number of vertical layers (e.g. two–four layers). The developed model is second‐order accuracy in time and space and is unconditionally stable; and it can be effectively used to model 3D surface wave motions. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
20.
A vertically integrated non‐linear dispersive wave model is expressed in non‐orthogonal curvilinear co‐ordinate system for simulating shallow or deep water wave motions in regions of arbitrary geometry. Both dependent and independent variables are transformed so that an irregular physical domain is converted into a rectangular computational domain with contravariant velocities. Thus, the wall condition for enclosures surrounding a typical physical domain, such as a channel, port or harbor, is satisfied accurately and easily. The numerical scheme is based on staggered grid finite‐difference approximations, which result in implicit formulations for the momentum equations and semi‐explicit formulation for the continuity equation. Test cases of linear wave propagation in converging, diverging and circular channels are performed to check the reliability of model simulations against the analytical solutions. Cnoidal waves of different steepness values in a circular channel are also considered as examples to non‐linear wave propagation within curved walls. In closing, remarks concerning versatility and practical uses of the numerical model are made. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献