首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DFT investigations are carried out to explore the effective catalyst forms of DBU and H2O and the mechanism for the formation of 2,3‐dihydropyrido[2,3‐d]‐pyrimidin‐4(1H)‐ones. Three main pathways are disclosed under unassisted, water‐catalyzed, DBU and water cocatalyzed conditions, which involves concerted nucleophilic addition and H‐transfer, concerted intramolecular cyclization and H‐transfer, and Dimroth rearrangement to form the product. The results indicated that the DBU and water cocatalyzed pathway is the most favored one as compared to the rest two pathways. The water donates one H to DBU and accepts H from 2‐amino‐nicotinonitrile ( 1 ), forming [DBU‐H]+‐H2O as effective catalyst form in the proton migration transition state rather than [DBU‐H]+‐OH?. The hydrogen bond between [DBU‐H]+···H2O··· 1 ? decreases the activation barrier of the rate‐determining step. Our calculated results open a new insight for the green catalyst model of DBU‐H2O. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
The mechanism of the reaction of acetone with HO2 has been studied by quantum chemical computations. Different stationary points on the potential energy surface (PES) of the reaction have been characterized. These stationary points are the reactants, products, molecular complexes, and transition states. Three pathways have been studied: two H‐abstraction channels and one HO2‐addition channel. The MP2 level of theory with the 6‐311G(d,p) basis set was employed for geometry optimization. The electronic energies was obtained at the PMP2, PMP4, and CCSD(T) level of theory with the 6‐311G(d,p) basis set on the computed geometries. The addition pathway is clearly the more favorable, contrary to the acetone + OH system. The pre‐reactive hydrogen‐bonded complexes have been characterized and show a large red shift between the O? H stretching frequency in the HO2 radical and the one in the HO2 fragment of intermolecular complexes. Our addition rate constant k+ at T = 298 K (3.49 × 10?16 cm3 s?1) is consistent with previous experimental results (giving an upper limit of the rate constant of 6 × 10?16 cm3 s?1 at 298 K). © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

4.
The role of the HO4? anion in atmospheric chemistry and biology is a matter of debate, because it can be formed from, or be in equilibrium with, key species such as O3 + HO? or HO2 + O2?. The determination of the stability of HO4? in water therefore has the greatest relevance for better understanding the mechanism associated with oxidative cascades in aqueous solution. However, experiments are difficult to perform because of the short‐lived character of this species, and in this work we have employed DFT, CCSD(T) complete basis set (CBS), MRCI/aug‐cc‐pVTZ, and combined quantum mechanics/molecular mechanics (QM/MM) calculations to investigate this topic. We show that the HO4? anion has a planar structure in the gas phase, with a very large HOO? OO bond length (1.823 Å). In contrast, HO4? adopts a nonplanar configuration in aqueous solution, with huge geometrical changes (up to 0.232 Å for the HOO? OO bond length) with a very small energy cost. The formation of the HO4? anion is predicted to be endergonic by 5.53±1.44 and 2.14±0.37 kcal mol?1 with respect to the O3 + HO? and HO2 + O2? channels, respectively. Moreover, the combination of theoretical calculations with experimental free energies of solvation has allowed us to obtain accurate free energies for the main reactions involved in the aqueous decomposition of ozone. Thus, the oxygen transfer reaction (O3 + OH? → HO2 + O2?) is endergonic by 3.39±1.80 kcal mol?1, the electron transfer process (O3 + O2? → O3? + O2) is exergonic by 31.53±1.05 kcal mol?1, supporting the chain‐carrier role of the superoxide ion, and the reaction O3 + HO2? → OH + O2? + O2 is exergonic by 12.78±1.15 kcal mol?1, which is consistent with the fact that the addition of small amounts of HO2? (through H2O2) accelerates ozone decomposition in water. The combination of our results with previously reported thermokinetic data provides some insights into the potentially important role of the HO4? anion as a key reaction intermediate.  相似文献   

5.
Second‐order rate constants have been measured spectrophotometrically for the reactions of Op‐nitrophenyl thionobenzoate ( 1 , PNPTB) with HO?, butan‐2,3‐dione monoximate (Ox?, α‐nucleophile), and p‐chlorophenoxide (p‐ClPhO?, normal nucleophile) in DMSO/H2O of varying mixtures at (25.0±0.1) °C. Reactivity of these nucleophiles significantly increases with increasing DMSO content. HO? is less reactive than p‐ClPhO? toward 1 up to 70 mol % DMSO although HO? is over six pKa units more basic in these media. Ox? is more reactive than p‐ClPhO? in all media studied, indicating that the α‐effect is in effect. The magnitude of the α‐effect (i.e., k/kp) increases with the DMSO content up to 50 mol % DMSO and decreases beyond that point. However, the dependency of the α‐effect profile on the solvent for reactions of 1 contrasts to that reported previously for the corresponding reactions of p‐nitrophenyl benzoate ( 2 , PNPB); reactions of 1 result in much smaller α‐effects than those of 2 . Breakdown of the α‐effect into ground‐state (GS) and transition‐state (TS) effects shows that the GS effect is not responsible for the α‐effect across the solvent mixtures. The role of the solvent has been discussed on the basis of the bell‐shaped α‐effect profiles found in the current study as well as in our previous studies, that is, a GS effect in the H2O‐rich region through H‐bonding interactions and a TS effect in the DMSO‐rich media through mutual polarizability interactions.  相似文献   

6.
We report variational transition‐state theory calculations for the OH + O3→ HO2 + O2 reaction based on the recently reported double many‐body expansion potential energy surface for ground‐state HO4 [Chem Phys Lett 2000, 331, 474]. The barrier height of 1.884 kcal mol?1 is comparable to the value of 1.77–2.0 kcal mol?1 suggested by experimental measurements, both much smaller than the value of 2.16–5.11 kcal mol?1 predicted by previous ab initio calculations. The calculated rate constant shows good agreement with available experimental results and a previous theoretical dynamics prediction, thus implying that the previous ab initio calculations will significantly underestimate the rate constant. Variational and tunneling effects are found to be negligible over the temperature range 100–2000 K. The O1? O2 bond is shown to be spectator like during the reactive process, which confirms a previous theoretical dynamics prediction. © 2007 Wiley Periodicals, Inc. 39: 148–153, 2007  相似文献   

7.
A kinetic study is reported for alkaline hydrolysis of X‐substituted phenyl diphenylphosphinates ( 1 a – i ). The Brønsted‐type plot for the reactions of 1 a – i is linear over 4.5 pKa units with βlg=?0.49, a typical βlg value for reactions which proceed through a concerted mechanism. The Hammett plots correlated with σo and σ? constants are linear but exhibit many scattered points, while the corresponding Yukawa–Tsuno plot results in excellent linear correlation with ρ=1.42 and r=0.35. The r value of 0.35 implies that leaving‐group departure is partially advanced at the rate‐determining step (RDS). A stepwise mechanism, in which departure of the leaving group from an addition intermediate occurs in the RDS, is excluded since the incoming HO? ion is much more basic and a poorer nucleofuge than the leaving aryloxide. A dissociative (DN + AN) mechanism is also ruled out on the basis of the small βlg value. As the substituent X in the leaving group changes from H to 4‐NO2 and 3,4‐(NO2)2, ΔH decreases from 11.3 kcal mol?1 to 9.7 and 8.7 kcal mol?1, respectively, while ΔS varies from ?22.6 cal mol?1 K?1 to ?21.4 and ?20.2 cal mol?1 K?1, respectively. Analysis of LFERs combined with the activation parameters assigns a concerted mechanism to the current alkaline hydrolysis of 1 a – i .  相似文献   

8.
The reaction of OH? with O3 eventually leads to the formation of .OH radicals. In the original mechanistic concept (J. Staehelin, J. Hoigné, Environ. Sci. Technol. 1982 , 16, 676–681), it was suggested that the first step occurred by O transfer: OH?+O3→HO2?+O2 and that .OH was generated in the subsequent reaction(s) of HO2? with O3 (the peroxone process). This mechanistic concept has now been revised on the basis of thermokinetic and quantum chemical calculations. A one‐step O transfer such as that mentioned above would require the release of O2 in its excited singlet state (1O2, O2(1Δg)); this state lies 95.5 kJ mol?1 above the triplet ground state (3O2, O2(3Σg?)). The low experimental rate constant of 70 M ?1 s?1 is not incompatible with such a reaction. However, according to our calculations, the reaction of OH? with O3 to form an adduct (OH?+O3→HO4?; ΔG=3.5 kJ mol?1) is a much better candidate for the rate‐determining step as compared with the significantly more endergonic O transfer (ΔG=26.7 kJ mol?1). Hence, we favor this reaction; all the more so as numerous precedents of similar ozone adduct formation are known in the literature. Three potential decay routes of the adduct HO4? have been probed: HO4?→HO2?+1O2 is spin allowed, but markedly endergonic (ΔG=23.2 kJ mol?1). HO4?→HO2?+3O2 is spin forbidden (ΔG=?73.3 kJ mol?1). The decay into radicals, HO4?→HO2.+O2.?, is spin allowed and less endergonic (ΔG=14.8 kJ mol?1) than HO4?→HO2?+1O2. It is thus HO4?→HO2.+O2.? by which HO4? decays. It is noted that a large contribution of the reverse of this reaction, HO2.+O2.?→HO4?, followed by HO4?→HO2?+3O2, now explains why the measured rate of the bimolecular decay of HO2. and O2.? into HO2?+O2 (k=1×108 M ?1 s?1) is below diffusion controlled. Because k for the process HO4?→HO2.+O2.? is much larger than k for the reverse of OH?+O3→HO4?, the forward reaction OH?+O3→HO4? is practically irreversible.  相似文献   

9.
Hydride‐transfer reactions between benzylic substrates and 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) were investigated by DFT (density functional theory) calculations. The lowest unoccupied molecular orbital of DDQ has the largest extension on two carbonyl oxygens, which comes from two‐step mixing of antisymmetric orbitals of fragment π MOs. Transition‐state (TS) geometries and activation energies of reactions of four benzylic substrates R2? CH2para‐C6H4? R1 (R1, R2 = H and/or OCH3) with DDQ were calculated. M06‐2X/6‐311(+*)G* was found to be a practical computational method, giving energies and geometries similar to those of M06‐2X/6‐311++G(3df,2pd) and wB97xD/6‐311++G(3df,2pd). For toluene (R1 = R2 = H), an initiation‐propagation model was suggested, and the calculated kinetic isotope effect k(H)/k(D) = 5.0 with the tunnel correction at the propagating step is in good agreement with the experimental value 5.2. A reaction of para‐MeO? C6H4? CH2(OMe) + DDQ + (H2O)14para‐MeO? C6H4? C(?O)H + HOMe + DDQH2 + (H2O)13 was investigated by M06‐2X/6‐311(+*)G*. Four elementary processes were found and the hydride transfer (TS1) is the rate‐determining step. The hydride transfer was promoted by association with the water cluster. The size of the water cluster, (H2O)n, at TS1 was examined. Three models of n = 14, 20, and 26 were found to give similar activation energies. Metal‐free neutral hydride transfers from activated benzylic substrates to DDQ were proposed to be ready processes both kinetically and thermodynamically. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
The reactions of HO2 with FCHO and ClCHO have been theoretically investigated by combining beyond‐CCSD(T) electronic structure benchmarks, validated density functional theory, and canonical variational transition state theory with small‐curvature tunneling, coupled‐torsions anharmonicity, and high‐frequency anharmonicity. This investigation explores three different reaction mechanisms: radical addition plus a hydrogen transfer, radical addition, and hydrogen abstraction. The calculated results show that the dominant reaction pathway is the terminal oxygen atom of HO2 added to the carbon atom of XCHO (X = F, Cl) and simultaneously the hydrogen atom of HO2 transferred to the oxygen atom of the C=O group in XCHO. The reaction barriers of the other reaction pathways are so high that these processes are negligible in the atmosphere. Although the barrier height of the dominant reaction pathway in the HO2 + FCHO reaction is 0.61 kcal/mol higher than that of the corresponding HO2 + ClCHO reaction, the HO2 + FCHO reaction is faster than the HO2 + ClCHO reaction because the variational effects of HO2 + ClCHO is more obvious than that of the HO2 + FCHO. The present results show that the HO2 + FCHO reaction may be important in the atmosphere. The present results should be useful in evaluating the atmospheric fate of XCHO (X = F, Cl).  相似文献   

11.
The development of aprotic Li‐O2 batteries, which are promising candidates for high gravimetric energy storage devices, is severely limited by superoxide‐related parasitic reactions and large voltage hysteresis. The fundamental reaction pathway of the aprotic Li‐O2 battery can be altered by the addition of water, which changes the discharge intermediate from superoxide (O2) to hydroperoxide (HO2). The new mechanism involving HO2 intermediate realizes the two‐electron transfer through a single step, which significantly suppresses the superoxide‐related side reactions. Moreover, addition of water also triggers a solution‐based pathway that effectively reduces the voltage hysteresis. These discoveries offer a possible solution for desirable Li‐O2 batteries free of aggressive superoxide species, highlighting the design strategy of modifying the reaction pathway for Li‐O2 electrochemistry.  相似文献   

12.
The reaction of nitrosodimethylamine, nitrosoazetidine, nitrosopyrrolidine, and nitrosopiperidine with the hydroxyl radical has been studied using electronic structure calculations in gas and aqueous phases. The rate constant was calculated using variational transition state theory. The reactions are initiated by H‐atom abstraction from the αC─H group of nitrosamines and leads to the formation of alkyl radical intermediate. In the subsequent reactions, the initially formed alkyl radical intermediate reacts with O2 forming a peroxy radical. The reaction of peroxy radical with other atmospheric oxidants, such as HO2 and NO radicals, is studied. The structures of the reactive species were optimized by using the density functional theory methods, such as M06‐2X, MPW1K, and BHandHLYP, and hybrid methods G3B3. The single‐point energy calculations were also performed at CCSD(T)/6‐311+G(d,p)// M062X/6‐311+G(d,p) level. The calculated thermodynamical parameters show that the reactions corresponding to the formation of intermediates and products are highly exothermic. We have calculated the rate constant for the initial H‐atom abstraction and subsequent favorable secondary reactions using canonical variational transition state theory over the temperature range of 150–400 K. The calculated rate constant for initial H‐atom abstraction reaction is ∼3 × 10−12 cm3 molecule−1 s−1 and is in agreement with the previous experimental results. The calculated thermochemical data and rate constants show that the reaction profile and kinetics of the reactions are less dependent on the number of methyl groups present in the nitrosoamines. Furthermore, it has been found that the atmospheric lifetime of nitrosamines is around 5 days in the normal atmospheric OH concentration.  相似文献   

13.
The generation of metastable O2(1Σg+) and O2(1Δg) in the H + O2 system of reactions was studied by the flow discharge chemiluminescence detection method. In addition to the O2(1Σg+) and O2(1Δg) emissions, strong OH(v = 2) → OH(v = 0), OH(v = 3) → OH(v = 1), HO2(2A000) → HO2(2A000), HO2(2A001) → HO2(2A000), and H O2(2A200) → HO2(2A000) emissions were detected in the H + O2 system. The rate constants for the quenching of O2(1Σg+) by H and H2 were determined to be (5.1 ± 1.4) × 10?13 and (7.1 ± 0.1) × 10?13 cm3 s?1, respectively. An upper limit for the branching ratio to produce O2(1Σg+) by the H + HO2 reaction was calculated to be 2.1%. The contributions from other reactions producing singlet oxygen were investigated.  相似文献   

14.
Pseudo‐first‐order rate constants (kobs) for alkaline hydrolysis of 4‐nitrophthalimide (NPTH) decreased by nearly 8‐ and 6‐fold with the increase in the total concentration of cetyltrimethyl‐ammonium bromide ([CTABr]T) from 0 to 0.02 M at 0.01 and 0.05 M NaOH, respectively. These observations are explained in terms of the pseudophase model and pseudophase ion‐exchange model of micelle. The increase in the contents of CH3CN from 1 to 70% v/v and CH3OH from 0 to 80% v/v in mixed aqueous solvents decreases kobs by nearly 12‐ and 11‐fold, respectively. The values of kobs increase by nearly 27% with the increase in the ionic strength from 0.03 to 3.0 M. The mechanism of alkaline hydrolysis of NPTH involves the reactions between HO? and nonionized NPTH as well as between HO? and ionized NPTH. The micellar inhibition of the rate of alkaline hydrolysis of NPTH is attributed to medium polarity effect. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 407–414, 2001  相似文献   

15.
The potential energy surface (PES) for the CF3CFHO2+HO2 reaction has been theoretically investigated using the DFT [B3LYP/6‐311G(d,p)] and B3LYP/6‐311++G(3df,3pd)//B3LYP/6‐311G(d,p) levels of theory. Both singlet and triplet PESs are investigated. The reaction mechanism on the triplet surface is simple. It is revealed that the formation of CF3CFHOOH+3O2 is the dominant channel on the triplet surface. On the basis of the ab initio data, the total rate constants for the reaction CF3CFHO2+HO2 in the T = 210–500 K range have been computed using conventional transition state theory with Wigner's tunneling correction and have been fitted by a rate constant expression as k = 1.04 ×10?12(cm3 molecule?1 s?1) exp (700.33/T). Calculated transition state rate constants with Wigner's tunneling correction for the reaction CF3CFHO2+HO2 are in good agreement with the available experimental values. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

16.
Ab initio calculations at MP2 level of theory were used to study the proton transfer at the carboxylic sites of amino acids, in the isolated, mono‐ and di‐hydrated forms. In the case of water dimer, two interaction modes with glycine neutral structures (see Fig. 3 ) were explored, corresponding to the concerted and stepwise reaction pathways. Their transition states can be described as (H2O? H? OH2)+ [Fig. 4 (a)] and (H2O‐‐‐H? OH2)+ [Fig. 4 (b)], respectively. The energy analysis indicated that the concerted pathway is preferred. In the isolated, mono‐ and di‐hydrated glycine complexes, the activation barriers of the proton transfer at the carboxylic sites were calculated to be 34.49, 16.59, and 13.36 kcal mol?1, respectively. It was thus shown that the proton transfer is significantly assisted and catalyzed by water monomer so that it can take place at room temperature. Instead, the further addition of water molecules plays solvent effects rather than catalytic effects to this proton transfer process. The above results obtained with discrete water molecules were supported by the solvent continuum calculated data. It was also observed that the heavy dependence of the solvent continuum models on dipole moments may produce misleading results. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

17.
A discharge-flow apparatus with resonance fluorescence and chemiluminescence detection has been used to monitor O2(b 1σ) production from several reactions of the HO2 radical at 300 K and 1-torr total pressure. O2(b), HO2, and OH were observed when F atoms were added to H2O2 in the gas phase. Signal strengths of O2(b) were proportional to initial concentrations of H2O2 and HO2. These observations were analyzed by using a simple three step mechanism and a more complete computer simulation with 22 reaction steps. The results indicate that the F + HO2 reaction yields O2(b) with an efficiency of (3.6 ± 1.4) × 10?3. By monitoring [O2(b)] and [HO2] upon addition of an excess second reactant to HO2, O2(b) yields from the reactions of HO2 with O, Cl, D, H, and OH were found to be <1 × 10?2, <5 × 10?4, <2 × 10?3, <8 × 10?3, and <1 × 10?3, respectively. Yields of O2(b) from the HO2 ± HO2 reaction were found to be less than 3 × 10?2.  相似文献   

18.
New experimental results were obtained for the mutual sensitization of the oxidation of NO and methane in a fused silica jet‐stirred reactor operating at 105 Pa, over the temperature range 800–1150 K. The effect of the addition of sulfur dioxide was studied. Probe sampling followed by online FTIR analyses and off‐line GC‐TCD/FID analyses allowed the measurement of concentration profiles for the reactants, stable intermediates, and final products. A detailed chemical kinetic modeling of the present experiments was performed. An overall reasonable agreement between the present data and modeling was obtained. According to the present modeling, the mutual sensitization of the oxidation of methane and NO proceeds via the NO to NO2 conversion by HO2 and CH3O2. The conversion of NO to NO2 by CH3O2 is more important at low temperatures (800 K) than at higher temperatures (850–900 K) where the production of NO2 is mostly due to the reaction of NO with HO2. The NO to NO2 conversion is favored by the production of the HO2 and CH3O2 radicals yielded from the oxidation of the fuel. The production of OH resulting from the oxidation of NO accelerates the oxidation of the fuel: NO + HO2 → OH+ NO2 followed by OH + CH4→ CH3. In the lower temperature range of this study, the reaction further proceeds via CH3 + O2→ CH3O2; CH3O2+ NO → CH3O + NO2. At higher temperatures, the production of CH3O involves NO2: CH3+ NO2→ CH3O. This sequence of reactions is followed by CH3O → CH2O + H; CH2O +OH → HCO; HCO + O2 → HO2 and H + O2 → HO2 → CH2O + H; CH2O +OH → HCO; HCO + O2 → HO2 and H + O2 → HO2. The data and the modeling show that unexpectedly, SO2 has no measurable effect on the kinetics of the mutual sensitization of the oxidation of NO and methane in the present conditions, whereas it frequently acts as an inhibitor in combustion. This result was rationalized via a detailed kinetic analysis indicating that the inhibiting effect of SO2 via the sequence of reactions SO2+H → HOSO, HOSO+O2 → SO2+HO2, equivalent to H+O2?HO2, is balanced by the reaction promoting step NO+HO2 → NO2+OH. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 406–413, 2005  相似文献   

19.
Electron pulse radiolysis at ?298°K of 2 atm H2 containing 5 torr O2 produces HO2 free radical whose disappearance by reaction (1), HO2 + HO2 →H2O2 + O2, is monitored by kinetic spectrophotometry at 230.5 nm. Using a literature value for the HO2 absorption cross section, the values k1 = 2.5×10?12 cm3/molec·sec, which is in reasonable agreement with two earlier studies, and G(H) G(HO2) ?13 are obtained. In the presence of small amounts of added H2O or NH3, the observed second-order decay rate of the HO2 signal is found to increase by up to a factor of ?2.5. A proposed kinetic model quantitatively explains these data in terms of the formation of previously unpostulated 1:1 complexes, HO2 + H2O ? HO2·H2O (4a) and HO2 + NH3? HO2·NH3 (4b), which are more reactive than uncomplexed HO2 toward a second uncomplexed HO2 radical. The following equilibrium constants, which agree with independent theoretical calculations on these complexes, are derived from the data: 2×10?20?K4a?6.3 × 10?19 cm3/molec at 295°K and K4b = 3.4 × 10?18 cm3/molec at 298°K. Several deuterium isotope effects are also reported, including kH/kD = 2.8 for reaction (1). The atmospheric significance of these results is pointed out.  相似文献   

20.
Interconversion of the molybdenum amido [(PhTpy)(PPh2Me)2Mo(NHtBuAr)][BArF24] (PhTpy=4′‐Ph‐2,2′,6′,2“‐terpyridine; tBuAr=4‐tert‐butyl‐C6H4; ArF24=(C6H3‐3,5‐(CF3)2)4) and imido [(PhTpy)(PPh2Me)2Mo(NtBuAr)][BArF24] complexes has been accomplished by proton‐coupled electron transfer. The 2,4,6‐tri‐tert‐butylphenoxyl radical was used as an oxidant and the non‐classical ammine complex [(PhTpy)(PPh2Me)2Mo(NH3)][BArF24] as the reductant. The N?H bond dissociation free energy (BDFE) of the amido N?H bond formed and cleaved in the sequence was experimentally bracketed between 45.8 and 52.3 kcal mol?1, in agreement with a DFT‐computed value of 48 kcal mol?1. The N?H BDFE in combination with electrochemical data eliminate proton transfer as the first step in the N?H bond‐forming sequence and favor initial electron transfer or concerted pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号