首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile and efficient synthesis of 1,5‐benzodiazepines with an arylsulfonamido substituent at C(3) is described. 1,5‐Benzodiazepine, derived from the condensation of benzene‐1,2‐diamine and diketene, reacts with an arylsulfonyl isocyanate via an enamine intermediate to produce the title compounds of potential synthetic and pharmacological interest in good yields (Scheme 1). In addition, reaction of benzene‐1,2‐diamine and diketene in the presence of benzoyl isothiocyanate leads to N‐[2‐(3‐benzoylthioureido)aryl]‐3‐oxobutanamide derivatives (Scheme 2). This reaction proceeds via an imine intermediate and ring opening of diazepine. The structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization is proposed (Scheme 3).  相似文献   

2.
The reaction of aryl isoselenocyanates 8 with methyl 3‐amino‐4‐chloro‐1‐ethylpyrrolo[3,2‐c]quinoline‐2‐carboxylate ( 6 ) in boiling pyridine leads to tetracyclic selenaheterocycles of type 9 in high yield (Scheme 3). A reaction mechanism via an intermediate selenoureido derivative A and cyclization via nucleophilic substitution of Cl by Se is proposed (Schemes 3 and 5). The reaction of 6 with 4‐bromophenyl isothiocyanate yields the analogous thiaheterocycle 12 (Scheme 4). The molecular structures of 9c and 12 have been established by X‐ray crystallography.  相似文献   

3.
4‐Ethoxycarbonyl‐5‐phenyl‐2,3‐dihydrofuran‐2,3‐dione 1 reacts with aldehydes via the acylketene intermediate 2 giving the 1,3‐dioxin‐4‐ones 3a‐e and the 1,4‐bis(5‐ethoxycarbonyl‐4‐oxo‐6‐phenyl‐4H‐1,3‐dioxin‐2‐yl)benzene 4 , and a one step reaction between dibenzoylmethane and oxalylchloride gave 3,5‐dibenzoyl‐2,6‐diphenyl‐4‐pyrone 7 . The reaction of 1 with dibenzoylmethane, a dicarbonyl compound, provided ethyl 3‐benzoyl‐4‐oxo‐2,6‐diphenylpyran‐5‐carboxylate derivative 9 . Compound 9 was converted into the corresponding ethyl 3‐benzoyl‐4‐hydroxy‐2,6‐diphenylpyridine‐5‐carboxylate derivative 10 via its reaction with ammonium hydroxyde solution in 1 ‐butanol.  相似文献   

4.
The smooth reaction of 3‐chloro‐3‐(chlorosulfanyl)‐2,2,4,4‐tetramethylcyclobutanone ( 3 ) with 3,4,5‐trisubstituted 2,3‐dihydro‐1H‐imidazole‐2‐thiones 8 and 2‐thiouracil ( 10 ) in CH2Cl2/Et3N at room temperature yielded the corresponding disulfanes 9 and 11 (Scheme 2), respectively, via a nucleophilic substitution of Cl? of the sulfanyl chloride by the S‐atom of the heterocyclic thione. The analogous reaction of 3‐cyclohexyl‐2,3‐dihydro‐4,5‐diphenyl‐1H‐imidazole‐2‐thione ( 8b ) and 10 with the chlorodisulfanyl derivative 16 led to the corresponding trisulfanes 17 and 18 (Scheme 4), respectively. On the other hand, the reaction of 3 and 4,4‐dimethyl‐2‐phenyl‐1,3‐thiazole‐5(4H)‐thione ( 12 ) in CH2Cl2 gave only 4,4‐dimethyl‐2‐phenyl‐1,3‐thiazol‐5(4H)‐one ( 13 ) and the trithioorthoester derivative 14 , a bis‐disulfane, in low yield (Scheme 3). At ?78°, only bis(1‐chloro‐2,2,4,4‐tetramethyl‐3‐oxocyclobutyl)polysulfanes 15 were formed. Even at ?78°, a 1 : 2 mixture of 12 and 16 in CH2Cl2 reacted to give 13 and the symmetrical pentasulfane 19 in good yield (Scheme 5). The structures of 11, 14, 17 , and 18 have been established by X‐ray crystallography.  相似文献   

5.
The thermal reaction of trans‐1‐methyl‐2,3‐diphenylaziridine (trans‐ 1a ) with aromatic and cycloaliphatic thioketones 2 in boiling toluene yielded the corresponding cis‐2,4‐diphenyl‐1,3‐thiazolidines cis‐ 4 via conrotatory ring opening of trans‐ 1a and a concerted [2+3]‐cycloaddition of the intermediate (E,E)‐configured azomethine ylide 3a (Scheme 1). The analogous reaction of cis‐ 1a with dimethyl acetylenedicarboxylate ( 5 ) gave dimethyl trans‐2,5‐dihydro‐1‐methyl‐2,5‐diphenylpyrrole‐3,4‐dicarboxylate (trans‐ 6 ) in accord with orbital‐symmetry‐controlled reactions (Scheme 2). On the other hand, the reactions of cis‐ 1a and trans‐ 1a with dimethyl dicyanofumarate ( 7a ), as well as that of cis‐ 1a and dimethyl dicyanomaleate ( 7b ), led to mixtures of the same two stereoisomeric dimethyl 3,4‐dicyano‐1‐methyl‐2,5‐diphenylpyrrolidine‐3,4‐dicarboxylates 8a and 8b (Scheme 3). This result has to be explained via a stepwise reaction mechanism, in which the intermediate zwitterions 11a and 11b equilibrate (Scheme 6). In contrast, cis‐1,2,3‐triphenylaziridine (cis‐ 1b ) and 7a gave only one stereoisomeric pyrrolidine‐3,4‐dicarboxylate 10 , with the configuration expected on the basis of orbital‐symmetry control, i.e., via concerted reaction steps (Scheme 10). The configuration of 8a and 10 , as well as that of a derivative of 8b , were established by X‐ray crystallography.  相似文献   

6.
Approaches toward the preparative‐scale synthesis of target 3,4‐dihydro‐1(2H)‐isoquinolinones 1–3 are presented. Compounds 1 and 2 were prepared via a Schmidt rearrangement on easily obtained indanone precursors, but in low overall yield. A better method to make this class of compounds is exemplified by the large‐scale synthesis of 2 via a Curtius rearrangement sequence. Thus, high‐temperature thermal cyclization of an in situ formed styryl isocyanate from precursor 8 in the presence of tributylamine gave the corresponding 1(2H)‐isoquinolinone ( 9 ). Catalytic hydrogenation of 9 provided the desired 3,4‐dihydro‐5‐methyl‐1(2H)‐isoquinolinone ( 2 ) in 65 % overall yield. Similar reduction of a commercially available 5‐hydroxy‐1(2H)‐isoquinolinone precursor 10 followed by an O ‐alkylation/amination sequence gave target 3 in good overall yield. The route proceeding via the Curtius rearrangement is recommended for large scale synthesis of other 3,4‐dihydro‐1(2H)‐isoquinolinones. Only when deactivating substituents or sensitive functionality within the benzenoid ring render the high temperature ring closure of the intermediate isocyanate inefficient might a Schmidt rearrangement protocol be the method of choice.  相似文献   

7.
The synthesis of compound 2 and its derivatives 6 and 8 combining a pyrrolidine ring with an 1H‐pyrrole unit is described (Scheme 2). Their attempted usability as organocatalysts was not successful. Reacting these simple pyrrolidine derivatives with cinnamaldehyde led to the tricyclic products 3b, 9b , and 10b first (Scheme 1, Fig. 2). The final, major products were the pyrrolo‐indolizidine tricycles 3a, 9a , and 10a obtained via the iminium ion reacting intramolecularly with the nucleophilic β‐position of the 1H‐pyrrole moiety (cf. Scheme 1).  相似文献   

8.
The reaction of anthranilonitriles 8 with phenyl isoselenocyanates ( 1a ) in dry pyridine under reflux gave 4‐(phenylamino)quinazoline‐2(1H)‐selones 9 (Scheme 2). They are easily oxidized and converted to diselenides of type 11 . The analogous reaction of 8a with phenyl isothiocyanate ( 1b ) yielded the quinazoline‐2(1H)‐thione 10 (Scheme 2). A reaction mechanism via a Dimroth rearrangement of the primarily formed intermediate is presented in Scheme 3. The molecular structures of 10 and 11a have been established by X‐ray crystallography. Unexpectedly, no selone or diselenide was obtained in the case of the reaction with 3‐aminobenzo[b]furan‐2‐carbonitrile ( 14 ). The only product isolated was the selenide 16 (Scheme 4), the structure of which has been established by X‐ray crystallography.  相似文献   

9.
The reaction of aroyl chlorides 1 with KSeCN and ethyl diazoacetate ( 6 ) in acetone at room temperature yields ethyl 2‐aroyl‐5‐(aroylimino)‐2,5‐dihydro‐1,2,3‐selenadiazole‐4‐carboxylates 7 (Scheme 3). A reaction mechanism via the initial formation of the corresponding aroyl isoselenocyanates 2 followed by a 1,3‐dipolar cycloaddition of the diazo compound with the C=Se bond to give ethyl 5‐(aroylimino)‐4,5‐dihydro‐1,2,3‐selenadiazole‐4‐carboxylates of type D is proposed. Acylation of the latter at N(2) leads to the final products 7 . Deacetylation of 7 to give ethyl 5‐(aroylimino)‐1,2,3‐selenadiazole‐4‐carboxylates 10 is achieved by treatment of 7 with morpholine (Scheme 5). The intermediate isoselenocyanates 2 partially oligomerize to give two different oligomers. The symmetrical one reacts with morpholine to yield selenourea derivatives 12 (Scheme 6).  相似文献   

10.
Irradiation (350 nm) of 2‐alkynylcyclohex‐2‐enones 1 in benzene in the presence of an excess of 2‐methylbut‐1‐en‐3‐yne ( 2 ) affords in each case a mixture of a cis‐fused 3,4,4a,5,6,8a‐hexahydronaphthalen‐1(2H)‐one 3 and a bicyclo[4.2.0]octan‐2‐one 4 (Scheme 2), the former being formed as main product via 1,6‐cyclization of the common biradical intermediate. The (parent) cyclohex‐2‐enone and other alkylcyclohex‐2‐enones 7 also give naphthalenones 8 , albeit in lower yields, the major products being bicyclo[4.2.0]octan‐2‐ones (Scheme 4). No product derived from such a 1,6‐cyclization is observed in the irradiation of 3‐alkynylcyclohex‐2‐enone 9 in the presence of 2 (Scheme 4). Irradiation of the 2‐cyano‐substituted cyclohexenone 12 under these conditions again affords only traces of naphthalenone 13 , the main product now being the substituted bicyclo[4.2.0]oct‐7‐ene 16 (Scheme 5), resulting from [2+2] cycloaddition of the acetylenic C−C bond of 2 to excited 12 .  相似文献   

11.
This paper presents the synthesis of a series of 5,6‐dihydro‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ring system derivatives with a [1,2,3]triazole ring bonded in position 2. The procedure is based on cycloaddition of substituted alkyl azides to the terminal triple bond of 5,6‐dihydro‐2‐ethynyl‐9‐methyl‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 4 ). This cycloaddition produced two regioisomers ?5,6‐dihydro‐9‐methyl‐2‐(1‐substituted‐1H‐[1,2,3]triazol‐5‐yl)‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 7 ) and 2‐(1‐substituted‐1H‐[1,2,3]triazol‐4‐yl) derivative 8 . The required 2‐ethynyl deriva tive 4 was obtained from the starting 2‐unsubstituted compound 1 by bromination to yield the 2‐bromo derivative 2 , which was converted by Sonogashira reaction to trimethylsilylethyne 3 and finally, the protective trimethylsilyl group was removed by hydrolysis.  相似文献   

12.
A new total synthesis of the natural carbazole murrayanine ( 1 ) was developed by using the 4,5‐dimethyleneoxazolidin‐2‐one 12 as starting material. The latter underwent a highly regioselective Diels–Alder cycloaddition with acrylaldehyde (=prop‐2‐enal; 13 ) to give adduct 14 (Scheme 3). Conversion of this adduct into diarylamine derivative 9 was carried out via hydrolysis and methylation (Scheme 4). Differing from our previous synthesis, in which such a diarylamine derivative was transformed into 1 by a PdII‐stoichiometric cyclization, this new approach comprised an improved cyclization through a more efficient Pd0‐catalyzed intramolecular diaryl coupling which was applied to 9 , thus obtaining the natural carbazole 1 in a higher overall yield.  相似文献   

13.
The reaction of N‐phenylimidoyl isoselenocyanates 1 with 2‐amino‐1,3‐thiazoles 10 in acetone proceeded smoothly at room temperature to give 4H‐1,3‐thiazolo[3,2‐a] [1,3,5]triazine‐4‐selones 13 in fair yields (Scheme 2). Under the same conditions, 1 and 2‐amino‐3‐methylpyridine ( 11 ) underwent an addition reaction, followed by a spontaneous oxidation, to yield the 3H‐4λ4‐[1,2,4]selenadiazolo[1′,5′:1,5] [1,2,4]selenadiazolo[2,3‐a]pyridine 14 (Scheme 3). The structure of 14 was established by X‐ray crystallography (Fig. 1). Finally, the reaction of 1‐methyl‐1H‐imidazole ( 12 ) and 1 led to 3‐methyl‐1‐(N‐phenylbenzimidoyl)‐1H‐imidazolium selenocyanates 15 (Scheme 4). In all three cases, an initially formed selenourea derivative is proposed as an intermediate.  相似文献   

14.
(±)‐Desoxynoreseroline ( 3 ), the basic ring structure of the pharmacologically active alkaloid physostigmine ( 1 ), was synthesized starting from 3‐allyl‐1,3‐dimethyloxindole ( 9 ). The latter was prepared from the corresponding 2H‐azirin‐3‐amine 6 by a BF3‐catalyzed ring enlargement via an amidinium intermediate 7 (Scheme 1). An alternative synthesis of 9 was also carried out by the reaction of N‐methylaniline with 2‐bromopropanoyl bromide ( 12 ), followed by intramolecular Friedel–Crafts alkylation of the formed anilide 13 to give Julian's oxindole 11 . Further alkylation of 11 with allyl bromide in the presence of LDA gave 9 in an excellent yield (Scheme 3). Ozonolysis of 9 , followed by mild reduction with (EtO)3P, gave the aldehyde 14 , whose structure was chemically established by the transformation to the corresponding acetal 15 (Scheme 4). Condensation of 14 with hydroxylamine and hydrazine derivatives, respectively, gave the corresponding imine derivatives 16a – 16d as a mixture of syn‐ and anti‐isomers. Reduction of this mixture with LiAlH4 proceeded by loss of ROH or RNH2 to give racemic 3 (Scheme 5).  相似文献   

15.
Thermal decomposition of thiones of selected N‐, O‐ and S‐heterocycles under flash vacuum thermolysis conditions was investigated. In the case of six‐membered 4H‐3,1‐benzoxathiin‐4‐thione 6 , the course of the reaction depended on the substitution pattern at C(2) (Scheme 3). Thus, the 2‐unsubstituted derivative 6a led to the unstable product 2 , which upon treatment with MeOH was converted quantitatively into methyl 2‐mercaptobenzoate ( 7 ). The analogous thermolysis of the 2,2‐dimethyl derivative 6b yielded 2‐methyl‐4H‐1‐benzothiopyran‐4‐thione ( 8 ) as a sole product. In the case of thiophthalide derivatives 15 , a thermal rearrangement in the gas phase leading to the corresponding benzo[c]thiophen‐1(3H)‐ones 16 in high yields was observed (Scheme 6). Unexpectedly, thionation of 1,3‐oxathiolan‐5‐one 17 with Lawesson's reagent under standard conditions led to 1,2‐dithietane derivative 19 , which, after the gas‐phase thermolysis, underwent a ring enlargement to yield 3H‐1,2‐dithiole 20 (Scheme 7). The six‐membered 4H‐1,3‐benzothiazine‐4‐thione 21 was shown to give three products: phenanthro[9,10‐c]‐1,2‐dithiete ( 22 ), 3H‐1,3‐benzodithiole‐3‐thione ( 23 ), and N‐(3H‐1,2‐benzodithiol‐3‐ylidene)prop‐2‐en‐1‐amine ( 24 ) (Scheme 8). The latter is the product of the initial reaction, whereas 22 and 23 are postulated to be formed as secondary products of the conversion of the intermediate 6‐(thioxomethylene)cyclohexa‐2,4‐diene‐1‐thione ( 26 ) (Schemes 9 and 10).  相似文献   

16.
The 1,2‐dithiolosultam derivative 14 was obtained from the (α‐bromoalkylidene)propenesultam derivative 9 (Scheme 1). Regioselective cleavage of the two ester groups (→ 1b or 2b ) allowed the preparation of derivatives with different substituents at C(3) in the dithiole ring (see 27 and 28 ) as well as at C(6) in the isothiazole ring (see 17 – 21 ; Scheme 2). Curtius rearrangement of the 6‐carbonyl azide 21 in Ac2O afforded the 6‐acetamide 22 , and saponification and decarboxylation of the latter yielded ‘sulfothiolutin’ ( 30 ). Hydride reductions of two of the bicyclic sultams resulted in ring opening of the sultam ring and loss of the sulfonyl group. Thus the reduction of the dithiolosultam derivative 14 yielded the alkylidenethiotetronic acid derivative 33 (tetronic acid=furan‐2,4(3H,4H)‐dione), and the lactam‐sultam derivative 10 gave the alkylidenetetramic acid derivative 35 (tetramic acid=1,5‐dihydro‐4‐hydroxy‐2H‐pyrrol‐2‐one) (Scheme 3). Some of the new compounds ( 14, 22, 26 , and 30 ) exhibited antimycobacterial activity. The oxidative addition of 1 equiv. of [Pt(η2‐C2H4)L2] ( 36a , L=PPh3; 36b , L=1/2 dppf; 36c , L=1/2 (R,R)‐diop) into the S? S bond of 14 led to the cis‐(dithiolato)platinum(II) complexes 37a – c . (dppf=1,1′‐bis(diphenylphosphino)ferrocene; (R,R)‐diop={[(4R,5R)‐2,2‐demithyl‐1,3‐dioxolane‐4,5‐diyl]bis(methylene)}bis[diphenylphosphine]).  相似文献   

17.
In this paper we report that the title compound (3) reacts with excess N,N‐dimethylformamide (DMF) containing two equivalents of acetic acid to afford 6‐amino‐1,2,4‐triazolo[3,4‐f][1,2,4]triazin‐8(7H)‐one ( 1 ). When 3‐amino‐2‐benzyl‐6‐hydrazino‐1,2,4‐triazin‐5(2H)‐one ( 6 ), the N‐2 benzylated derivative of 3 , is treated under the same conditions, ring cyclization does not occur; instead, 3‐amino‐2‐benzyl‐6‐(2‐formyl‐hydrazino)‐1,2,4‐triazin‐5(2H)‐one ( 7 ) is formed. Single‐crystal X‐ray analysis of a 3‐ethyl derivative of compound 1 reveals the predominant tautomeric structure to be the 7H‐tautomer (7H‐ 1 ). From these results, we propose a reasonable cyclization mechanism that incorporates two important points: (1) the tautomerism of the N‐2 hydrogen with the C‐5 oxo group aromatizes the 1,2,4‐triazine ring, and (2) the DMF is proto‐nated by acetic acid on the nitrogen atom, then deamination occurs where DMF is attacked by the 6‐hydrazino group of 3 or 6 .  相似文献   

18.
It has been shown previously that the reaction of diazomethane with 5‐benzylidene‐3‐phenylrhodanine ( 1 ) in THF at ?20° occurs at the exocyclic C?C bond via cyclopropanation to give 3a and methylation to yield 4 , respectively, whereas the corresponding reaction with phenyldiazomethane in toluene at 0° leads to the cyclopropane derivative 3b exclusively. Surprisingly, under similar conditions, no reaction was observed between 1 and diphenyldiazomethane, but the 2‐diphenylmethylidene derivative 5 was formed in boiling toluene. In the present study, these results have been rationalized by calculations at the DFT B3LYP/6‐31G(d) level using PCM solvent model. In the case of diazomethane, the formation of 3a occurs via initial Michael addition, whereas 4 is formed via [3+2] cycloaddition followed by N2 elimination and H‐migration. The preferred pathway of the reaction of 1 with phenyldiazomethane is a [3+2] cycloaddition, subsequent N2 elimination and ring closure of an intermediate zwitterion to give 3b . Finally, the calculations show that the energetically most favorable reaction of 1 with diphenyldiazomethane is the initial formation of diphenylcarbene, which adds to the S‐atom to give a thiocarbonyl ylide, followed by 1,3‐dipolar electrocyclization and S‐elimination.  相似文献   

19.
The synthesis of new 1,2‐disubstituted, five‐ or six‐ring‐carbocyclic nucleoside analogues of cytidine, compounds 1 and 2a – d , are described. These compounds were obtained by aminolysis, starting from the corresponding uracil derivative, via nucleophilic displacement of a triazolyl (Scheme 1) or a (2,4,6‐triisopropylphenyl)sulfonyl (TPS) group (Scheme 2) at 4‐position of the pyrimidine ring.  相似文献   

20.
A four‐component reaction for the synthesis of 1,2‐dihydroisoquinoline derivatives is described. The Huisgen 1,4‐dipolar intermediate, which is produced from isoquinoline and an electron‐deficient acetylene compound 1 , reacts with H2O in the presence of diketene to produce 1,2‐dihydroisoquinoline derivatives 2 (Scheme 1). In addition, reaction of isoquinoline, dibenzoylacetylene (=1,4‐diphenylbut‐2‐yne‐1,4‐dione), and diketene in the presence of H2O leads to pyrroloisoquinoline derivative 7 . The structures of the compounds 2a – f and 7 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, EI‐MS) and by elemental analyses. A plausible mechanism for the reaction is proposed (Schemes 2 and 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号