首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asymmetric anionic homopolymerizations of achiral N‐substituted maleimides (RMI) were performed with lithium 4‐alkyl‐2,2‐dialkyloxazolidinylamide. All obtained polymers were optically active, exhibiting opposite optical rotation to that of a corresponding oxazolidinyl group at the terminal of the main chain. This suggests that opposite optical rotation to the corresponding chiral oxazolidine was induced to the polymer main chain. In the polymerization using a fluorenyllithium (FlLi)–oxazolidine complex, the obtained polymer with a fluorenyl group at the polymer end showed a negative specific rotation. This also suggests that asymmetric induction took place in the polymer main chain. The asymmetric induction was supported by the circular dichroism (CD) and GPC analysis with polarimetric detector. Optical activity of the polymer was attributed to different contents of (S,S) and (R,R) structures formed from threo‐diisotactic additions, as supported by the 13C‐NMR spectra of the polymers and the model compounds. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 473–482, 1999  相似文献   

2.
Asymmetric anionic homopolymerizations of N‐substituted maleimide (RMI) bearing bulky substituents [R = benzyl, diphenylmethyl (DPhMI), 9‐fluorenyl (9‐FlMI), triphenylmethyl, (diphenylmethyloxycarbonyl)methyl, (9‐fluorenyloxycarbonyl)methyl] were carried out with complexes of organometal compounds (alkyllithium, diethylzinc) with six chiral ligands to obtain optically active polymers. The chiroptical properties of the polymers were affected strongly by the substituents on nitrogen in the maleimide ring, the organometal and chiral ligands. Poly(DPhMI) initiated by an n‐butyllithium/(−)‐sparteine (Sp) complex showed a positive specific rotation ([α] +60.3°). Poly(9‐FlMI) prepared with a florenyllithium/Sp complex exhibited the highest specific rotation (+65.7°). The specific rotations of the poly(RMI) obtained were attributed to different contents between the stereogenic centers (S,S) and (R,R) based on threo‐diisotactic structures of the main chain. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 310–320, 2000  相似文献   

3.
The asymmetric anionic polymerization of o-, m-, and p-methylphenyl isocyanates, p-methoxyphenyl isocyanate, p-chlorophenyl isocyanate, 2,6- and 3,4-dimethylphenyl isocyanates, and 1-naphthyl isocyanate was carried out using chiral anionic initiators such as the lithium salts of (?) -menthol, (?) -(2-methoxymethyl) pyrrolidine, and (+) -1-(2-pyrrolidinylmethyl) pyrrolidine. Although o-methylphenyl isocyanate gave an insoluble polymer and 2,6-dimethylphenyl isocyanate afforded no polymer, the other monomers gave soluble polymers, which showed optical activity due to the prevailing helicity of the polymer chain induced by chiral initiator residues attached to the α-end of the polymer chain. The molecular mechanics conformational calculation for a tetramer of m-methylphenyl isocyanate supported the helical conformation of the main chain. The optical rotation of the polymers depended significantly on temperature. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
N‐(1‐Phenyldibenzosuberyl)methacrylamide (PDBSMAM) and its derivative N‐[(4‐butylphenyl)dibenzosuberyl]methacrylamide (BuPDBSMAM) were synthesized and polymerized in the presence of (+)‐ and (?)‐menthols at different temperatures. The tacticity of the polymers was estimated to be nearly 100% isotactic from the 1H NMR spectra of polymethacrylamides derived in D2SO4. Poly(PDBSMAM) was not soluble in the common organic solvents, and its circular dichroism spectrum in the solid state was similar to that of the optically active poly(1‐phenyldibenzosuberyl methacrylate) (poly(PDBSMA)) with a prevailing one‐handed helicity, indicating that the poly(PDBSMAM) also has a similar helicity. Poly(BuPDBSMAM) was optically active and soluble in THF and chloroform. Its optical activity was much higher than that of the poly[N‐(triphenylmethayl)methacrylamide], suggesting that one‐handed helicity may be more efficiently induced on the poly(BuPDBSMAM). The copolymerization of BuPDBSMAM with a small amount of optically active N‐[(R)‐(+)‐1‐(1‐naphthyl)ethyl]methacrylamide, particularly in the presence of (?)‐menthol, produced a polymer with a high optical activity. The prevailing helicity may also be efficiently induced. The chiroptical properties of the obtained polymers were studied in detail. The chiral recognition by the polymers was also evaluated. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1304–1315, 2007  相似文献   

5.
Radical polymerization of N‐methyl‐N‐(2‐pyridyl)acrylamide (MPyAAm) was carried out in dichloromethane at low temperatures in the presence of trifluoroacetic acid (TFA). The m dyad contents of the polymers obtained at 0 °C increased linearly from 37 to 60% with an increase in the [TFA]0/[MPyAAm]0 ratio from 1 to 5. Nuclear magnetic resonance (NMR) analysis of MPyAAm–TFA mixtures in dichloromethane‐d2 revealed that the favorable conformation in terms of the pyridyl group to the carbonyl group in MPyAAm switched from s‐trans to s‐cis by protonation. The results suggest that controlling the conformation of MPyAAm resulted in control of the stereospecificity in radical polymerization of the monomer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
7.
A mixture of triphenylmethyl methacrylate (TrMA) and methyl methacrylate (MMA) was polymerized with chiral anionic initiator, such as fluorenyl lithium(−)-sparteine [FlLi-(−)-Sp] and fluorenyl lithium-(+)-2S,3S-dimethoxy-1,4-bis(dimethylamino)butane [FlLi-(+)-DDB] in toluene at −78°C. The results show that after the stable helix formed, when FlLi-(+)-DDB was used as the initiator, TrMA and MMA could be copolymerized, whereas when FlLi-(−)-Sp was used, the two monomers tended to be selectively polymerized into two polymers. This phenomenon has been explained by the existence of helix-selective polymerization. © John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1925–1931, 1997  相似文献   

8.
The asymmetric induction leading to a one‐handed helix was investigated in the anionic and radical copolymerization of triphenylmethyl methacrylate (TrMA) and (S)‐2‐isopropenyl‐4‐phenyl‐2‐oxazoline ((S)‐IPO), and highly isotactic copolymers with a reasonable optical activity were obtained. In the anionic copolymerization, the optical activity of the obtained copolymers depended on the polarity of solvents, and a highly optically active copolymer was produced in the copolymerization in toluene. The chiral oxazoline monomer functioned not only as a comonomer but also as a chiral ligand to endow the polymer with large negative optical rotation in the copolymerization with TrMA. The copolymers with small positive optical rotation were obtained in THF, indicating that IPO unit may work only as the chiral monomer that dictates the helical sense via copolymerization with TrMA. The isotacticity of the obtained copolymers depended on the contents of TrMA units in the copolymers, but was almost independent of the solvent for copolymerization. In the radical copolymerization, the obtained copolymers exhibited small optical activities. It seemed that the chiral monomer cannot induce one‐handed helical structure of TrMA sequences even if the sequences probably have a high isotacticity. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 441–447  相似文献   

9.
A series of novel N‐substituted‐N‐vinylformamides were synthesized, and the effect of bulky substituents on their radical polymerizability and polymer structure were investigated. N‐(p‐Methoxybenzyl)‐N‐vinylformamide ( 3 ) and N‐cyclohexylmethyl‐N‐vinylformamide ( 4 ) generated polymers, while it was known that their N‐vinylacetamide derivatives did not. 1H NMR and 13C NMR analyses of poly( 3 ), however, revealed almost no difference among the various polymerization conditions, implying that the substituent bulkiness did not influence the polymer structures. On the other hand, the chiral polymers, which were obtained by the radical polymerization of N‐(S)‐2‐methylbutyl‐N‐vinylformamide ((S)‐ 5 ) and N‐(S)‐2,3‐dihydroxypropyl‐N‐vinylformamide ((S)‐ 7 ) at 0 °C, showed sharper spectral patterns than those obtained at higher polymerization temperatures. Furthermore, the intensities of their positive cotton effects on circular dichroism increased when the polymerization temperature was low, suggesting that the substituent bulkiness of (S)‐ 5 and (S)‐ 7 influenced the polymer structures, such as their stereoregularity and regioregularity. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Anionic polymerization of N‐methoxymethyl‐N‐isopropylacrylamide ( 1 ) was carried out with 1,1‐diphenyl‐3‐methylpentyllithium and diphenylmethyllithium, ‐potassium, and ‐cesium in THF at ?78 °C for 2 h in the presence of Et2Zn. The poly( 1 )s were quantitatively obtained and possessed the predicted molecular weights based on the feed molar ratios between monomer to initiators and narrow molecular weight distributions (Mw/Mn = 1.1). The living character of propagating carbanion of poly( 1 ) either at 0 or ?78 °C was confirmed by the quantitative efficiency of the sequential block copolymerization using N,N‐diethylacrylamide as a second monomer. The methoxymethyl group of the resulting poly( 1 ) was completely removed to give a well‐defined poly(N‐isopropylacrylamide), poly(NIPAM), via the acidic hydrolysis. The racemo diad contents in the poly(NIPAM)s could be widely changed from 15 to 83% by choosing the initiator systems for 1 . The poly(NIPAM)s obtained with Li+/Et2Zn initiator system possessed syndiotactic‐rich configurations (r = 75–83%), while either atactic (r = 50%) or isotactic poly(NIPAM) (r = 15–22%) was generated with K+/Et2Zn or Li+/LiCl initiator system, respectively. Atactic and syndiotactic poly(NIPAM)s (42 < r < 83%) were water‐soluble, whereas isotactic‐rich one (r < 31%) was insoluble in water. The cloud points of the aqueous solution of poly(NIPAM)s increased from 32 to 37 °C with the r‐contents. These indicated the significant effect of stereoregularity of the poly(NIPAM) on the water‐solubility and the cloud point in water © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4832–4845, 2006  相似文献   

11.
Radical polymerization of N‐methylacrylamide (NMAAm), N,N‐dimethylacrylamide (DMAAm), and N‐methyl‐N‐phenylacrylamide (MPhAAm) was investigated in toluene at low temperatures. Atactic, isotactic, and syndiotactic polymers were obtained by the polymerization of NMAAm, DMAAm, and MPhAAm, respectively, indicating that the stereospecificity of the radical polymerization of acrylamide derivatives depended on the N‐substituents of the monomer used. From the viewpoint of monomer structure, the origin of the stereospecificity of radical polymerization of NMAAm derivatives is discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6534–6539, 2009  相似文献   

12.
A novel racemic methacrylate, (2-fluorophenyl)(4-fluorophenyl)(2-pyridyl)-methyl methacrylate1 (2F4F2PyMA), was synthesized and polymerized with chiral complexes of N,N′-diphenylethylenediamine monolithium amide (DPEDA-Li) with (−)-sparteine (Sp), (2S, 3S)-(+)-2,3-dimethoxy-1,4-bis(dimethylamino)butane (DDB), and (S)-(+)-1-(2-pyrrolidinylmethyl)pyrrolidine (PMP) in toluene at −78°C. The monomer showed higher resistance against methanolysis compared with triphenylmethyl methacrylate (TrMA) and several other analogues. In the asymmetric anionic polymerization of 2F4F2PyMA, PMP was found to be a more effective chiral ligand than DDB and Sp and gave quantitatively an optically active polymer with nearly perfect isotacticity. Enantiomer selection was observed in the polymerization of racemic 2F4F2PyMA with the chiral lithium complexes. Chiral recognition ability of the optically active poly(2F4F2PyMA) was examined by an enantioselective adsorption experiment. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2013–2019, 1998  相似文献   

13.
14.
Stable potassium enolates of N,N‐diethylacetamide [α‐potassio‐N,N‐diethylacetamide ( 1 )], N,N‐diethylpropionamide [α‐potassio‐N,N‐diethylpropionamide ( 2 )], and N,N‐diethylisobutyramide [α‐potassio‐N,N‐diethylisobutyramide ( 3 )] were prepared by the proton abstraction of the corresponding N,N‐diethylamides with diphenylmethylpotassium (Ph2CHK) or potassium naphthalenide in THF. The relative nucleophilicity of 1 – 3 was estimated to be in the order of 1 < 3 < 2 from the results of the alkylation reaction with methyl iodide. N,N‐diethylacetamide transferred its α‐proton to 2 quantitatively in THF at 0 °C, whereas no reaction occurred between N,N‐diethylisobutyramide and 2 ; this indicated the relative basicity to be 1 < 2 ~ 3 . Anionic polymerizations of N,N‐diethylacrylamide (DEA) and methyl methacrylate were quantitatively initiated with 2 in THF at ?78 °C, whereas the initiation efficiencies of 2 for styrene and 2‐vinylpyridine were about 2 and 67%, respectively. The initiation of DEA with 1 – 3 at ?78 or 0 °C in THF gave poly (DEA)s having broad molecular weight distributions (MWDs; Mw/Mn = 2) and ill‐controlled molecular weights. In contrast, poly(DEA)s of narrow MWDs (Mw/Mn < 1.2) and predicted Mn's were obtained with 2 in the presence of diethylzinc (Et2Zn) at ?78 °C, whereas the initiations with 1 /Et2Zn and 3 /Et2Zn at ?78 °C resulted in poor control of the molecular weights. At the higher temperature of 0 °C, all the binary initiator systems ( 1 – 3 /Et2Zn) induced controlled polymerizations of DEA in terms of the conversion, molecular weight, and MWD. The poly(DEA)s produced with 1 – 3 /Et2Zn at 0 °C showed mr‐rich configurations (mr = 76–89%), as observed for the poly(DEA) generated with Ph2CHK/Et2Zn. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1260–1271, 2007  相似文献   

15.
16.
17.
This study investigates the effect of ionic liquids (ILs) on the anionic polymerization of methyl methacrylate (MMA). Polymethyl methacrylate (PMMA), an isotactic polymer, is prepared by anionic polymerization at a high reaction temperature with an IL that acts as both solvent and additive. The most plausible reaction mechanism is determined using 1H NMR and Fourier-transform infrared spectroscopy. The electrostatic interaction between MMA and the IL increases the apparent steric hindrance in MMA, resulting in the isotactic PMMA.  相似文献   

18.
A kind of N‐substituted maleimide (RMI), chiral (S)‐N‐maleoyl‐L ‐leucine propargyl ester ((S)‐PLMI) with a specific rotation of [α]435 = ?27.5° was successfully synthesized from maleic anhydride, L ‐leucine, and propargyl alcohol. (S)‐PLMI was polymerized by three polymerization methods to obtain the corresponding optically active polymers. Asymmetric anionic, radical, and transition‐metal‐catalyzed polymerizations were carried out using organometal/chiral ligands, 2,2′‐azobisisobutyronitrile (AIBN) and (bicyclo [2,2,1]hepta‐2,5‐diene) chloro rhodium (I) dimer ([Rh(nbd) Cl]2), respectively. Poly((S)‐PLMI) obtained by [Rh(nbd)Cl]2 in DMF showed the highest specific rotation of ?280.6°. Chiroptical properties and structures of the polymers obtained were investigated by GPC, CD, IR, and NMR measurements. Two types of poly((S)‐PLMI)‐bonded‐silica gels as the chiral stationary phase (CSP) were prepared for high‐performance liquid chromatography (HPLC). Their optical resolution abilities were also elucidated. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3722–3738, 2007  相似文献   

19.
20.
N‐(4‐Tetrahydropyranyl‐oxy‐phenyl)maleimide (THPMI) was prepared and polymerized by radical or anionic initiators. THPMI could be polymerized by 2,2′‐azobis(isobutyronitrile) (AIBN) and potassium tert‐butoxide. Radical polymers (poly(THPMI)r) were obtained in 15–50% yields for AIBN in THF at 65°C after 2–5 h. The yield of anionic polymers (poly(THPMI)a) obtained from potassium tert‐butoxide in THF at 0°C after 20 h was 91%. The molecular weights of poly(THPMI)r and poly(THPMI)a were Mn = 2750–3300 (Mw/Mn = 1.2–3.3) and Mn = 11300 (Mw/Mn = 6.0), respectively. The difference in molecular weights of the polymers was due to the differences in the termination mechanism of polymerization and the solubility of these polymers in THF. The thermal decomposition temperatures were 205 and 365°C. The first decomposition step was based on elimination of the tetrahydropyranyl group from the poly(THPMI). Positive image patterns were obtained by chemical amplification of positive photoresist composed of poly(THPMI) and 4‐morpholinophenyl diazonium trifluoromethanesulfonate used as an acid generator. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 341–347, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号